![Augmenting Long-Term Memory Xanki Xmichaelnielsen Xsrs Sunday, July 15, 2018 6:57 PM](https://data.docslib.org/img/3a60ab92a6e30910dab9bd827208bcff-1.webp)
Augmenting Long-term Memory xanki xmichaelnielsen xsrs Sunday, July 15, 2018 6:57 PM "Michael Nielsen tried Anki several times in several years but only started using it in early 2016" Clipped from: http://augmentingcognition.com/ltm.html One day in the mid-1920s, a Moscow newspaper reporter named Solomon Shereshevsky entered the laboratory of the psychologist Alexander Luria. Shereshevsky's boss at the newspaper had noticed that Shereshevsky never needed to take any notes, but somehow still remembered all he was told, and had suggested he get his memory checked by an expert. Luria began testing Shereshevsky's memory. He began with simple tests, short strings of words and of numbers. Shereshevsky remembered these with ease, and so Luria gradually increased the length of the strings. But no matter how long they got, Shereshevsky could recite them back. Fascinated, Luria went on to study Shereshevsky's memory for the next 30 years. In a book summing up his research** Alexander Luria, “The Mind of a Mnemonist”, Harvard University Press (1968)., Luria reported that: [I]t appeared that there was no limit either to the capacity of S.'s memory or to the durability of the traces he retained. Experiments indicated that he had no difficulty reproducing any lengthy series of words whatever, even though these had originally been presented to him a week, a month, a year, or even many years earlier. In fact, some of these experiments designed to test his retention were performed (without his being given any warning) fifteen or sixteen years after the session in which he had originally recalled the words. Yet invariably they were successful. Such stories are fascinating. Memory is fundamental to our thinking, and the notion of having a perfect memory is seductive. At the same time, many people feel ambivalent about their own memory. I've often heard people say “I don't have a very good memory”, sometimes sheepishly, sometimes apologetically, sometimes even defiantly. Given how central memory is to our thinking, it's natural to ask whether computers can be used as tools to help improve our memory. This question turns out to be highly generative of good ideas, and pursuing it has led to many of the most important vision documents in the history of computing. One early example was Vannevar Bush's 1945 proposal** Vannevar Bush, As We May Think, The Atlantic (1945). for a mechanical memory extender, the memex. Bush wrote: A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory. technology Page 1 The memex vision inspired many later computer pioneers, including Douglas Engelbart's ideas about the augmentation of human intelligence, Ted Nelson's ideas about hypertext, and, indirectly, Tim Berners-Lee's conception of the world wide web** See, for example: Douglas Engelbart, Augmenting Human Intellect (1962); Ted Nelson, Complex information processing: a file structure for the complex, the changing and the indeterminate (1965); and Tim Berners-Lee, Information Management: a Proposal (1989).. In his proposal for the web, Berners-Lee describes the need for his employer (the particle physics organization CERN) to develop a collective institutional memory, a pool of information to develop which could grow and evolve with the organization and the projects it describes. These are just a few of the many attempts to use computers to augment human memory. From the memex to the web to wikis to org-mode to Project Xanadu to attempts to make a map of every thought a person thinks: the augmentation of memory has been an extremely generative vision for computing. In this essay we investigate personal memory systems, that is, systems designed to improve the long-term memory of a single person. In the first part of the essay I describe my personal experience using such a system, named Anki. As we'll see, Anki can be used to remember almost anything. That is, Anki makes memory a choice, rather than a haphazard event, to be left to chance. I'll discuss how to use Anki to understand research papers, books, and much else. And I'll describe numerous patterns and anti-patterns for Anki use. While Anki is an extremely simple program, it's possible to develop virtuoso skill using Anki, a skill aimed at understanding complex material in depth, not just memorizing simple facts. The second part of the essay discusses personal memory systems in general. Many people treat memory ambivalently or even disparagingly as a cognitive skill: for instance, people often talk of “rote memory” as though it's inferior to more advanced kinds of understanding. I'll argue against this point of view, and make a case that memory is central to problem solving and creativity. Also in this second part, we'll discuss the role of cognitive science in building personal memory systems and, more generally, in building systems to augment human cognition. In a future essay, Toward a Young Lady's Illustrated Primer, I will describe more ideas for personal memory systems. The essay is unusual in style. It's not a conventional cognitive science paper, i.e., a study of human memory and how it works. Nor is it a computer systems design paper, though prototyping systems is my own main interest. Rather, the essay is a distillation of informal, ad hoc observations and rules of thumb about how personal memory systems work. I wanted to understand those as preparation for building systems of my own. As I collected these observations it seemed they may be of interest to others. You can reasonably think of the essay as a how-to guide aimed at helping technology Page 2 You can reasonably think of the essay as a how-to guide aimed at helping develop virtuoso skills with personal memory systems. But since writing such a guide wasn't my primary purpose, it may come across as a more-than- you-ever-wanted-to-know guide. To conclude this introduction, a few words on what the essay won't cover. I will only briefly discuss visualization techniques such as memory palaces and the method of loci. And the essay won't describe the use of pharmaceuticals to improve memory, nor possible future brain-computer interfaces to augment memory. Those all need a separate treatment. But, as we shall see, there are already powerful ideas about personal memory systems based solely on the structuring and presentation of information. Part I: How to remember almost anything: the Anki system I'll begin with an account of my own experience with the personal memory system Anki** I've no affiliation at all with Anki. Other similar systems include Mnemosyne and SuperMemo. My limited use suggests Mnemosyne is very similar to Anki. SuperMemo runs only on Windows, and I haven't had an opportunity to use it, though I have been influenced by essays on the SuperMemo website. I won't try to hide my enthusiasm for Anki behind a respectable facade of impartiality: it's a significant part of my life. Still, it has many limitations, and I'll mention some of them through the essay. The material is, as mentioned above, quite personal, a collection of my own observations and informal rules of thumb. Those rules of thumb may not apply to others; indeed, I may be mistaken about how well they apply to me. It's certainly not a properly controlled study of Anki usage! Still, I believe there is value in collecting such personal experiences, even if they are anecdotal and impressionistic. I am not an expert on the cognitive science of memory, and I'd appreciate corrections to any errors or misconceptions. At first glance, Anki seems nothing more than a computerized flashcard program. You enter a question: technology Page 3 And a corresponding answer: Later you'll be asked to review the card: that is, shown the question, and asked whether you know the answer or not. technology Page 4 What makes Anki better than conventional flashcards is that it manages the review schedule. If you can answer a question correctly, the time interval between reviews gradually expands. So a one-day gap between reviews becomes two days, then six days, then a fortnight, and so on. The idea is that the information is becoming more firmly embedded in your memory, and so requires less frequent review. But if you ever miss an answer, the schedule resets, and you again have to build up the time interval between reviews. While it's obviously useful that the computer manages the interval between reviews, it perhaps doesn't seem like that big a deal. The punchline is that this turns out to be a far more efficient way to remember information. How much more efficient? To answer that question, let's do some rough time estimates. On average, it takes me about 8 seconds to review a card. Suppose I was using conventional flashcards, and reviewing them (say) once a week. If I wanted to remember something for the next 20 years, I'd need 20 years times 52 weeks per year times 8 seconds per card. That works out to a total review time of just over 2 hours for each card. By contrast, Anki's ever-expanding review intervals quickly rise past a month and then out past a year. Indeed, for my personal set of Anki cards the average interval between reviews is currently 1.2 years, and rising. In an appendix below I estimate that for an average card, I'll only need 4 to 7 minutes of total review time over the entire 20 years.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages38 Page
-
File Size-