Rudi Mathematici

Rudi Mathematici

Rudi Mathematici 4 3 2 x -8176x +25065656x -34150792256x+17446960811280=0 Rudi Mathematici Gennaio 1 1 M (1803) Guglielmo LIBRI Carucci dalla Somaja 18º USAMO (1989) - 5 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE u e v sono due numeri reali per cui e`: (1912) Boris GNEDENKO (1822) Rudolf Julius Emmanuel CLAUSIUS 2 M 8 (1905) Lev Genrichovich SHNIRELMAN i 9 (1938) Anatoly SAMOILENKO åu +10 *u = i=1 3 G (1917) Yuri Alexeievich MITROPOLSHY 10 4 V (1643) Isaac NEWTON i 11 (1838) Marie Ennemond Camille JORDAN = v +10 * v = 8 5 S å (1871) Federigo ENRIQUES i=1 (1871) Gino FANO Determinare (con dimostrazione) qual'e` il 6 D (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM maggiore. 2 7 L (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Gli umani si dividono in due categorie: quelli che 8 M (1888) Richard COURANT non conoscono la matematica e quelli che si (1924) Paul Moritz COHN prendono cura di loro. (1942) Stephen William HAWKING 9 M (1864) Vladimir Adreievich STELKOV A mathematician confided 10 G (1875) Issai SCHUR That a Moebius strip is one-sided (1905) Ruth MOUFANG You' get quite a laugh (1545) Guidobaldo DEL MONTE 11 V If you cut it in half, (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR For it stay in one piece when divided. 12 S (1906) Kurt August HIRSCH 13 D (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN A mathematician's reputation rests on the (1876) Luther Pfahler EISENHART number of bad proofs he has given. (1876) Erhard SCHMIDT 3 14 L (1902) Alfred TARSKI Abram BESICOVICH (1704) Johann CASTILLON 15 M (1717) Mattew STEWART If you are afraid of something, measure it, and (1850) Sofia Vasilievna KOVALEVSKAJA you will realize it is a mere triple 16 M (1801) Thomas KLAUSEN Renato CACCIOPPOLI 17 G (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS Someone told me that each equation I included in 18 V (1856) Luigi BIANCHI a book would halve the sales. (1880) Paul EHRENFEST (1813) Rudolf Friedrich Alfred CLEBSCH 19 S Stephen HAWKING (1879) Guido FUBINI (1908) Aleksandr Gennadievich KUROS God not only plays dice. He also sometimes 20 D (1775) Andre` Marie AMPERE throws the dice were they cannot be seen. (1895) Gabor SZEGO (1904) Renato CACCIOPPOLI Stephen HAWKING 4 21 L (1846) Pieter Hendrik SCHOUTE (1915) Yuri Vladimirovich LINNIK "When I use a word," Humpty Dumpty said, in a 22 M (1592) Pierre GASSENDI rather scornful tone, "it means just what I choose (1908) Lev Davidovich LANDAU (1840) Ernst ABBE it to mean, neither more or less". "The question 23 M (1862) David HILBERT is," said Alice, "wether you can make words mean (1891) Abram Samoilovitch BESICOVITCH so many different things"."The question is," said 24 G (1914) Vladimir Petrovich POTAPOV Humpty Dumpty, "wich is to be master; that's (1627) Robert BOYLE all". 25 V (1736) Joseph-Louis LAGRANGE (1843) Karl Herman Amandus SCHWARTZ Charles DOGSON 26 S (1799) Benoit Paul Emile CLAPEYRON When we ask advice, we are usually looking for 27 D (1832) Charles Lutwidge DOGSON an accomplice. 5 28 L (1701) Charles Marie de LA CONDAMINE (1892) Carlo Emilio BONFERRONI Joseph-Louis LAGRANGE 29 M (1817) William FERREL (1888) Sidney CHAPMAN The latest authors, like the most ancient, strove to 30 M (1619) Michelangelo RICCI subordinate the phenomena of nature to the laws (1715) Giovanni Francesco FAGNANO dei Toschi of mathematics 31 G (1841) Samuel LOYD (1896) Sofia Alexandrovna JANOWSKAJA Isaac NEWTON Rudi Mathematici Febbraio 5 1 V (1900) John Charles BURKILL 19º USAMO (1990) - 5 (1522) Lodovico FERRARI 2 S Trovate (come funzione di n) il numero degli 3 D (1893) Gaston Maurice JULIA interi positivi la cui rappresentazione in base n 6 4 L (1905) Eric Cristopher ZEEMAN consiste di cifre distinte con la proprieta` (ad esclusione della cifra piu` significativa) che ogni (1757) Jean Marie Constant DUHAMEL 5 M cifra differisce di ±1 da qualche cifra alla sua 6 M (1612) Antoine ARNAULD sinistra. (1695) Nicolaus (II) BERNOULLI 7 G (1877) Godfried Harold HARDY La filosofia e` un gioco con degli obiettivi ma (1883) Eric Temple BELL senza regole. 8 V (1700) Daniel BERNOULLI La matematica e` un gioco con delle regole ma (1875) Francis Ysidro EDGEWORTH senza obiettivi. (1775) Farkas Wolfgang BOLYAI 9 S (1907) Harod Scott MacDonald COXETER Consider the pitiful plight 10 D (1747) Aida YASUAKI Of a runner who wasn't too bright 7 11 L (1800) William Henry Fox TALBOT But he sprinted so fast, (1839) Josiah Willard GIBBS That he vanished at last (1915) Richard Wesley HAMMING By red-shifting himself out of sight 12 M (1914) Hanna CAEMMERER NEUMANN 13 M (1805) Johann Peter Gustav Lejeune DIRICHLET Common sense is not really so common. 14 G (1468) Johann WERNER (1849) Hermann HANKEL Antoine ARNAUD (1896) Edward Artur MILNE 15 V (1564) Galileo GALILEI It would be better for the true physics if there (1861) Alfred North WHITEHEAD were no mathematicians on hearth. 16 S (1822) Francis GALTON (1853) Georgorio RICCI-CURBASTRO Daniel BERNOULLI (1903) Beniamino SEGRE 17 D (1890) Sir Ronald Aymler FISHER A mathematician can will recognize Cauchy, (1891) Adolf Abraham Halevi FRAENKEL Gauss, Jacobi, or Helmohltz after reading a few 8 18 L (1404) Leon Battista ALBERTI pages, just as musician recognize, from the first 19 M (1473) Nicolaus COPERNICUS few bars, Mozart, Beethoven or Schubert. 20 M (1844) Ludwig BOLTZMANN Ludwig BOLTZMANN 21 G (1591) Girard DESARGUES (1915) Evgenni Michailovitch LIFSHITZ Whenever you can, count. 22 V (1903) Frank Plumpton RAMSEY (1583) Jean-Baptiste MORIN Francis GALTON 23 S (1951) Shigefumi MORI One of the principle objects of research in my 24 D (1871) Felix BERNSTEIN department of knowledge is to find the point of 9 25 L (1827) Henry WATSON view from which the subject appears in the 26 M (1786) Dominique Francois Jean ARAGO greatest simplicity. 27 M (1881) Luitzen Egbertus Jan BROUWER Willard GIBBS 28 G (1735) Alexandre Theophile VANDERMONDE I am interested in mathematics only as a creative (1860) Herman HOLLERITH art. Godfried HARDY Rudi Mathematici Marzo 9 1 V (1611) John PELL 18º USAMO (1990) - 5 (1836) Julius WEINGARTEN 2 S E` dato un triangolo acutangolo ABC . Il cerchio 3 D (1838) George William HILL di diametro AB interseca l'altezza CC` e la sua (1845) Georg CANTOR estensione nei punti M e N e il cerchio di 10 4 L (1822) Jules Antoine LISSAJUS diametro AC interseca l'altezza BB` e la sua 5 M (1512) Gerardus MERCATOR estensione nei punti P e Q. Provare che M, N, P (1759) Benjamin GOMPERTZ e Q sono conciclici. (1817) Angelo GENOCCHI 6 M (1866) Ettore BORTOLOTTI I simboli algebrici vengono utilizzati quando non 7 G (1792) William HERSCHEL si sa di cosa si sta parlando. (1824) Delfino CODAZZI 8 V (1851) George CHRYSTAL A Calculus student upset as could be 9 S (1818) Ferdinand JOACHIMSTHAL That his antiderivative just didn't agree (1900) Howard Hathaway AIKEN With the answer in the book 10 D (1864) William Fogg OSGOOD Even after a second look 11 11 L (1811) Urbain Jean Joseph LE VERRIER Indeed it was off, but by a constant C (1853) Salvatore PINCHERLE (1685) George BERKELEY 12 M (1824) Gustav Robert KIRKHHOFF Don't worry about people stealing your ideas. If (1859) Ernesto CESARO your ideas are any good, you'll have to ram them (1861) Jules Joseph DRACH 13 M down people's throats. (1957) Rudy D`ALEMBERT (1864) Jozef KURSCHAK Howard AIKEN 14 G (1879) Albert EINSTEIN 15 V (1860) Walter Frank Raphael WELDON A mathematician is a person who can find (1868) Grace CHISOLM YOUNG analogies between theorems; a better 16 S (1750) Caroline HERSCHEL mathematician is one who can see analogies (1789) Georg Simon OHM between proofs and the best mathematician can (1846) Magnus Gosta MITTAG-LEFFLER notice analogies between theories. One can (1876) Ernest Benjamin ESCLANGON 17 D (1897) Charles FOX imagine that the ultimate mathematician is one who can see analogies between analogies. 12 18 L (1640) Philippe de LA HIRE (1690) Christian GOLDBACH Stefan BANACH (1796) Jacob STEINER (1862) Adolf KNESER 19 M (1910) Jacob WOLFOWITZ The essence of mathematics lies in its freedom. 20 M (1840) Franz MERTENS Georg CANTOR (1884) Philip FRANCK (1938) Sergi Petrovich NOVIKOV Perfect numbers like perfect men are very rare. 21 G (1768) Jean Baptiste Joseph FOURIER (1884) George David BIRKHOFF Rene` DESCARTES 22 V (1917) Irving KAPLANSKY 23 S (1754) Georg Freiherr von VEGA It is not enough to have a good mind. The main (1882) Emmy Amalie NOETHER thing is to use it well. (1897) John Lighton SYNGE (1809) Joseph LIOUVILLE Rene` DESCARTES 24 D (1948) Sun-Yung (Alice) CHANG 13 25 L (1538) Christopher CLAUSIUS I don't berlieve in mathematics. 26 M (1848) Konstantin ADREEV Albert EINSTEIN (1913) Paul ERDOS 27 M (1857) Karl PEARSON The search for truth is more precious than its 28 G (1749) Pierre Simon de LAPLACE possession. 29 V (1825) Francesco FAA` DI BRUNO Albert EINSTEIN (1873) Tullio LEVI-CIVITA (1896) Wilhelm ACKERMAN A mathematician is a machine for turning coffe (1892) Stefan BANACH 30 S into theorems. 31 D (1596) Rene` DESCARTES Paul ERDÖS Rudi Mathematici Aprile 14 1 L (1640) Georg MOHR 20º USAMO (1991) - 2 (1776) Marie-Sophie GERMAIN (1895) Alexander Craig AITKEN Sia S un insieme non vuoto di numeri, e siano 2 M (1934) Paul Joseph COHEN s (S) e p (S) la somma e il prodotto dei suoi (1835) John Howard Van AMRINGE 3 M (1892) Hans RADEMACHER elementi. Provare che e`: (1900) Albert Edward INGHAM (1909) Stanislaw Marcin ULAM n s (S) 2 1 (1971) Alice RIDDLE å = (n + 2n)- (n +1)å (1809) Benjamin PEIRCE 4 G p (S) i=1 i (1842) Francois Edouard Anatole LUCAS

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us