Terpenes Analysis of Essential Oils Using GC-VUV an Automated, Speed-Based Approach

Terpenes Analysis of Essential Oils Using GC-VUV an Automated, Speed-Based Approach

Terpenes Analysis of Essential Oils using GC-VUV An Automated, Speed-based Approach Alex Hodgson, Senior Applications Chemist VUV Analytics, Inc. VUV Absorption Spectroscopy • Simple absorption spectroscopy in a new spectral region • Vacuum ultraviolet (VUV) spectroscopy is a universal technique that provides unique spectral fingerprints • High energy, low wavelength exposure produces electronic transitions between σ→σ*, n→σ*, and π→π* molecular orbitals • Compound identification is unambiguous, even for structural isomers • Chromatographic compression leads to higher sample throughput • Software deconvolution of coelutions reduces priority on chromatographic separation • Chromatography runs can be deliberately compressed Introduction to Terpenes • Class of organic compounds produced by plants (and some insects) • Primary constituents of essential oils, which contribute heavily to fragrances and flavors • Widely utilized in the food and fragrance, cosmetics, and pharmaceuticals industries • Composed of multiple units of isoprene (C5H8) • Monoterpenes – 2 isoprene units (C10H16) • Sesquiterpenes – 3 isoprene units (C15H24) • Very high prevalence of structural isomers Monoterpenes Sesquiterpenes Monoterpenoids Sesquiterpenoids α-Pinene β-Myrcene Limonene β-Caryophyllene α-Humulene Eucalyptol p-Cymene Linalool trans-Nerolidol Guaiol Headspace/Solid-phase Microextraction (SPME) Setup Gerstel MPS2 Autosampler VUV Analytics Agilent 6890 Gas VGA-100 Chromatograph Headspace Run Conditions • Gerstel MPS2 • Incubator: 80°C for 10 minutes, 250 rpm agitation (10 sec on, 1 sec off) • Syringe: 90°C, 2.5 mL injection volume • Agilent 6890 GC • Inlet: 250°C, split 2.5:1 • Column: Restek Rxi-624Sil MS (30 m x 0.25 mm, 1.40-μm) • Flow: 4 mL/min helium, constant flow • Oven: 60°C, hold 0.1 min; 23.8°C/min to 300°C (run time - 10.2 min) • VUV Analytics VGA-100 • Makeup gas: 0.25 psi N2 • Flow cell and transfer line: 275°C • Acquisition rate: 4 spectra/sec • Acquisition range: 125-240 nm Terpenes Standard (Restek) Class Compound RT (min) Formula MW Sources Monoterpene α-Pinene 3.87 C10H16 136.23 Coniferous trees, rosemary, eucalyptus Camphene 4.03 C10H16 136.23 Camphor, neroli, valerian β-Myrcene 4.21 C10H16 136.23 Thyme, cardamom, hops, cannabis β-Pinene 4.25 C10H16 136.23 Nutmeg, rosemary, sage 3-Carene 4.43 C10H16 136.23 Turpentine, rosemary, cedar α-Terpinene 4.50 C10H16 136.23 Allspice, juniper, marjoram cis-Ocimene 4.53 C10H16 136.23 Basil, lavender, clary sage Limonene 4.58 C10H16 136.23 Citrus fruits, mint trans-Ocimene 4.64 C10H16 136.23 Basil, lavender, clary sage γ-Terpinene 4.77 C10H16 136.23 Citrus fruits, cumin, Syrian oregano Terpinolene 4.98 C10H16 136.23 Allspice, citrus fruits, juniper Terpenes Standard (Restek) Class Compound RT (min) Formula MW Sources Monoterpenoid p-Cymene 4.60 C10H14 134.22 Cumin, thyme Linalool 5.21 C10H18O 154.25 Mint, cinnamon, rosewood Isopulegol 5.67 C10H18O 154.25 European pennyroyal, corn mint Geraniol 6.27 C10H18O 154.25 Almonds, palmarosa, rose Sesquiterpene β-Caryophyllene 7.32 C15H24 204.35 Cloves, rosemary, hops, cannabis α-Humulene 7.53 C15H24 204.35 Sage, ginseng, tobacco Sesquiterpenoid cis-Nerolidol 7.85 C15H26O 222.37 Neroli, jasmine, lavender trans-Nerolidol 8.01 C15H26O 222.37 Neroli, jasmine, lavender Guaiol 8.37 C15H26O 222.37 Cypress, pine, cannabis α-Bisabolol 8.73 C15H26O 222.37 German chamomile, balsam poplar 0.5 7 1. α-Pinene 12. Terpinolene 2. Camphene 13. Linalool 125-160 nm 11 8 3. β-Myrcene 14. Isopulegol 4. β-Pinene 15. Geraniol 170-240 nm 3 5 6 9 5. 3-Carene 16. β-Caryophyllene 0.4 6. α-Terpinene 17. α-Humulene 7. cis-Ocimene 18. cis-Nerolidol 4 17 12 8. Limonene 19. trans-Nerolidol 16 9. p-Cymene 20. Guaiol 1 2 10. trans-Ocimene 21. α-Bisabolol 0.3 10 11. γ-Terpinene Last analyte Detector Response Detector 0.2 elutes before 9 min! 0.1 13 19 20 14 18 21 15 0 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 Time (min) Mass Spectra of Coeluting Isomers 41 93 β-Myrcene 69 121 136 93 β-Pinene 41 69 121 136 Absorbance Spectra of Monoterpene Isomers 1 α-Pinene β-Pinene β-Myrcene 0.9 Limonene cis-Ocimene trans-Ocimene 0.8 0.7 0.6 0.5 0.4 Normalized Absorbance Normalized 0.3 0.2 0.1 0 130 140 150 160 170 180 190 200 210 220 230 240 Wavelength (nm) Spectral Deconvolution of Coeluting Peaks 0.4 125-240 nm Limonene 0.35 α-Terpinene p-Cymene 0.3 cis-Ocimene trans-Ocimene 0.25 0.2 Detector Response Detector 0.15 0.1 0.05 Summary: • XXX 0 • XXX 4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64 4.66 • XXX Time (min) Region 1 – Single Analyte Spectral Matching 0.22 0.2 0.18 0.16 0.14 0.12 0.1 Absorbance 0.08 0.06 0.04 Summed Retention Region Spectrum 0.02 Summed Target Spectrum Best Fit; R^2 = 0.99890 alpha-Terpinene 0 130 140 150 160 170 180 190 200 210 220 230 240 Wavelength (nm) Region 2 – Summation of Spectra from Coelution #1 Summed Retention Region Spectrum 0.33 Summed Target Spectra Best Fit; R^2 = 0.99923 0.3 alpha-Terpinene 0.27 cis-Ocimene 0.24 0.21 0.18 0.15 Absorbance 0.12 0.09 0.06 0.03 0 130 140 150 160 170 180 190 200 210 220 230 240 Wavelength (nm) Region 3 – Summation of Spectra from Coelution #2 1.2 Summed Retention Region Spectrum 1.1 Summed Target Spectra Best Fit; R^2 = 0.99962 1 Limonene 0.9 p-Cymene 0.8 0.7 0.6 Absorbance 0.5 0.4 0.3 0.2 0.1 0 130 140 150 160 170 180 190 200 210 220 230 240 Wavelength (nm) Region 4 – Single Analyte Spectral Matching 0.5 0.45 0.4 0.35 0.3 0.25 Absorbance 0.2 0.15 0.1 Summed Retention Region Spectrum Summed Target Spectrum Best Fit; R^2 = 0.99771 0.05 trans-Ocimene 0 130 140 150 160 170 180 190 200 210 220 230 240 Wavelength (nm) VUV vs MS – Tale of the Tape Who has the edge? Higher flow limit Lower relative LOD Ease of use/ Ease of maintenance 3-dimensional information Unique spectra for all measurable compounds Isomer differentiation VUV Methods – Run Conditions Agilent 6890 GC VUV VUV VUV Method 1 Method 2 Method 3 • 1 µL injection Col Flow (mL/min • Inlet: 250°C, split 10-300:1 1.4 2 4 • Column: Restek Rxi-1ms He) (30 m x 0.25 mm, 0.25-µm) Oven Start (°C) 40 40 40 VUV Analytics VGA-100 Initial Hold (min) 0.2 0.2 0.1 • Makeup gas: 0.25 psi N2 Oven Ramp 9.6 20.4 30.9 • Flow cell and transfer line: 275°C (°C/min) • Acquisition rate: 5 spectra/sec • Acquisition range: 125-240 nm Oven Final (°C) 250 250 250 Run Time (min) 22.1 10.5 6.85 VUV Run Results Peak # Analyte 1 α-Pinene 2 Camphene 3 β-Pinene 4 β-Myrcene 5 3-Carene 6 α-Terpinene 7 p-Cymene 8 Eucalyptol 9 Limonene 10 cis-Ocimene 11 trans-Ocimene 12 γ-Terpinene 13 Terpinolene 14 Linalool 15 Isopulegol 16 Geraniol 17 β-Caryophyllene 18 α-Humulene 19 cis-Nerolidol 20 trans-Nerolidol 21 Caryophyllene oxide 22 Guaiol 23 α-Bisabolol VUV Methods Comparison – Tea Tree Oil VUV Method 1 VUV Method 2 VUV Method 3 VUV Average Compound (mg/mL) – (mg/mL) – (mg/mL) – CV (%) (mg/mL) 22.1min 10.5min 6.85min α-Pinene 20.6 21.5 23.0 21.7 4.48 α-Terpinene 77.9 80.4 84.8 81.0 3.57 β-Caryophyllene 2.09 2.26 2.03 2.13 4.46 β-Myrcene 7.20 7.72 7.95 7.62 5.14 β-Pinene 5.83 5.85 5.21 5.63 5.30 Eucalyptol 21.0 25.0 22.8 22.9 7.24 γ-Terpinene 161 172 193 175 7.53 Limonene 6.38 5.62 7.03 6.34 9.08 p-Cymene 25.2 27.9 33.3 28.8 11.6 Terpinolene 27 29.7 23.1 26.6 10.3 MS Methods – Run Conditions Agilent 6890 GC MS Method MS Method • 1 µL injection 1 2 • Inlet: 250°C, split 20-975:1 Col Flow (mL/min He) 1 1.4 • Column: Restek Rxi-1ms (30 m x 0.25 mm, 0.25-µm) Oven Start (°C) 40 50 • Transfer line: 280°C Initial Hold (min) 1.5 1 Agilent 5973N MS Ramp 1 (°C/min) 1 15 • EI Source: 300°C Ramp 1 End (°C) 77 -- • Quad 1: 200°C Ramp 2 (°C/min) 7 -- • Scan range: 50-250 Oven Final (°C) 250 250 Run Time (min) 63.2 14.3 MS Run Results Peak # Analyte 1 α-Pinene 2 Camphene 3 β-Pinene 4 β-Myrcene 5 3-Carene 6 α-Terpinene 7 p-Cymene 8 Eucalyptol 9 Limonene 10 cis-Ocimene 11 trans-Ocimene 12 γ-Terpinene 13 Terpinolene 14 Linalool 15 Isopulegol 16 Geraniol 17 β-Caryophyllene 18 α-Humulene 19 cis-Nerolidol 20 trans-Nerolidol 21 Caryophyllene oxide 22 Guaiol 23 α-Bisabolol VUV vs MS Comparison – Tea Tree Oil MS Method 1 Average w/ all VUV runs Compound CV (%) (mg/mL) – 63.2min (mg/mL) α-Pinene 26.3 22.8 9.56 α-Terpinene 91.2 83.6 6.04 β-Caryophyllene 1.58 1.99 12.6 β-Myrcene 7.44 7.58 3.76 β-Pinene 6.36 5.81 7.00 Eucalyptol 30.2 24.8 14.0 γ-Terpinene 205 183 9.48 Limonene 7.84 6.72 12.2 p-Cymene 35 30.4 13.1 Terpinolene 31.1 27.7 11.0 MS Methods Comparison – Tea Tree Oil MS Method 1 MS Method 2 MS Average Compound CV (%) (mg/mL) – 63.2min (mg/mL) – 14.3min (mg/mL) α-Pinene 26.3 27.3 26.8 1.75 α-Terpinene 91.2 96.2 93.7 2.71 β-Caryophyllene 1.58 2.39 1.99 20.4 β-Myrcene 7.44 9.78 8.61 13.6 β-Pinene 6.36 7.91 7.13 10.9 Eucalyptol 30.2 28.7 29.5 2.51 γ-Terpinene 205 202 204 0.788 Limonene 7.84 17.4 12.6 37.9 p-Cymene 35.0 43.0 39.0 10.2 Terpinolene 31.1 38.3 34.7 10.3 Spectral Comparison – Limonene & Eucalyptol 1 Norm Abs Norm 0 125 150 175 200 225 λ (nm) Eucalyptol Limonene Norm AbundNorm m/z Class-Type Analysis of….Gasoline? Time Interval Deconvolution (TID) • Alternative quantitation method using VUV Analyze™ software • Chromatogram is divided into equal, small time intervals (typically <0.05 min) • For each time interval, compare measured spectrum against reference spectra in designated library, best analyte(s) fit determined • Can quickly be performed to measure total response per analyte for a chromatogram; this can be converted into a relative mass percentage, relative volume percentage, or absolute concentration Essential Oil TID Run Conditions • Agilent 6890 GC • 1 μL injection • Inlet: 250°C, split 250:1 • Column: Restek Rxi-1ms

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us