
Windmill, Christopher (2013) Hierarchical network topographical routing. EngD thesis, University of Glasgow. http://theses.gla.ac.uk/4607 Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Hierarchical Network Topographical Routing Christopher Mark Windmill MEng (Hons) Electronics and Computer Science Submitted in fulfilment of the requirements for the Degree of Doctor of Engineering in System Level Integration School of Engineering University of Glasgow December 2013 Abstract Within the last 10 years the content consumption model that underlies many of the assumptions about traffic aggregation within the Internet has changed; the previous short burst transfer followed by longer periods of inactivity that allowed for statistical aggregation of traffic has been increasingly replaced by continuous data transfer models. Approaching this issue from a clean slate perspective; this work looks at the design of a network routing structure and supporting protocols for assisting in the delivery of large scale content services. Rather than approaching a content support model through existing IP models the work takes a fresh look at Internet routing through a hierarchical model in order to highlight the benefits that can be gained with a new structural Internet or through similar modifications to the existing IP model. The work is divided into three major sections: investigating the existing UK based Internet struc- ture as compared to the traditional Autonomous System (AS) Internet structural model; a localised hierarchical network topographical routing model; and intelligent distributed localised service models. The work begins by looking at the United Kingdom (UK) Internet struc- ture as an example of a current generation technical and economic model with shared access to the last mile connectivity and a large scale wholesale network between Internet Service Providers (ISPs) and the end user. This model combined with the Internet Protocol (IP) address allocation and transparency of the wholesale network results in an enforced inefficiency within the overall network restricting the ability of ISPs to collaborate. From this model a core / edge separation hierarchical virtual tree based routing protocol based on the physical network topography (layers 2 and 3) is developed to remove this enforced inefficiency by allowing direct management and control at the lowest levels of the network. This model acts as the base layer for further distributed intelligent services such as management and content delivery to enable both ISPs and third parties to actively collaborate and provide content from the most efficient source. Contents List of Tables 11 List of Figures 12 Author’s Declaration 18 Acronyms and Abbreviations 19 1 Introduction 26 1.1 Introduction................................ 26 1.2 ProjectOverview ............................. 26 1.3 ProjectAim................................ 27 1.4 ProjectObjectives ............................ 28 1.4.1 Review of Existing Network Strategies . 28 1.4.2 An Integrated Approach to Future Networks . 29 1.5 ApproachtoProject ........................... 29 1.6 ResearchRationale ............................ 30 1.6.1 ResearchRelevance........................ 30 1.6.2 WiderIndustryRelevance . 31 1.7 ThesisOverview.............................. 31 2 Background 33 2.1 Introduction................................ 33 2.2 InternetRoutingandSwitching . 34 2.2.1 AddressSpaceExhaustion . 35 2.2.2 ExtensionstoIPforLayer3 . 36 2.2.3 Switching(Layers2and3). 36 2.2.3.1 Switch and Router Virtualisation . 37 2.2.3.2 Logical and Physical Network Topologies . 41 3 2.2.4 Routing(layer3) ......................... 42 2.2.4.1 RoutingTypes ..................... 43 2.2.5 NetworkStructure ........................ 43 2.2.5.1 Intra-network Dynamic Routing . 45 2.2.5.2 Inter-network Dynamic Routing . 46 2.2.5.3 Administrative and Policy Control . 46 2.2.6 IPv4................................ 47 2.2.6.1 subnetmaskingandCIDR. 47 2.2.6.2 DomainNameSystem . .. 48 2.2.6.3 Network Address Translation and IPv4 . 49 2.2.7 IPv6................................ 49 2.2.8 IPRoutingExtensions ...................... 50 2.2.8.1 MPLSandAggregation . 50 2.2.8.2 CompactRouting.................... 50 2.2.8.3 Separation of Identity and Location . 51 2.2.8.4 Location / Identity Separation Protocol . 52 2.2.8.5 HostIdentityProtocol . 52 2.2.8.6 GSE/8+8 ........................ 52 2.2.8.7 Identifier-Locator Network Protocol. 53 2.2.8.8 Site Multihoming by IPv6 Intermediation . 53 2.2.9 IP and Mobility . 53 2.2.9.1 Mobile IP . 54 2.2.9.2 Mobile Ad Hoc Network (MANET) . 54 2.2.9.3 Network Mobility (NEMO) . 55 2.2.9.4 Mobile Ad hoc Network Mobility (MANEMO) . 55 2.2.9.5 Interactive Protocol for Mobile Networking . 56 2.3 NextGenerationArchitectures. 56 2.3.1 AccountableInternetProtocol . 57 2.3.2 ContentDeliveryNetworks. 57 2.3.3 ContentCentricNetworking . 58 2.3.3.1 Data-Orientated Network Architecture . 58 2.3.3.2 Content Centric Networking Project . 58 2.3.3.3 Juno Content-Centric Middleware . 59 2.3.3.4 PSIRP.......................... 59 2.3.3.5 PURSUIT........................ 59 2.3.4 ContentCentricTransport . 60 4 2.3.4.1 BitTorrent ....................... 60 2.3.5 Localised Bit Torrent . 60 2.3.5.1 Splitstream . 61 2.3.5.2 DOTandDitto..................... 61 2.4 IPSecurityandPrivacy ......................... 62 2.4.1 IPSecurity ............................ 62 2.4.2 DNSSecurity ........................... 62 2.4.3 TorOnionRouting ........................ 62 2.4.4 BitBlender............................. 63 2.5 InternetStructure............................. 63 2.5.1 UKInternetStructure . .. .. 64 2.5.2 BTNetworkArchitecture . 64 2.5.2.1 PremisesNodes..................... 65 2.5.2.2 AccessNodes ...................... 65 2.5.2.3 MetroNodes ...................... 65 2.5.2.4 CoreNodes ....................... 65 2.5.2.5 iNodes.......................... 65 2.5.2.6 NetworkArchitecture . 66 2.5.3 Independent ISP Architectures . 69 2.5.3.1 JA.NET . 69 2.5.3.2 Enta.net......................... 69 2.5.3.3 SkyBroadband..................... 74 2.5.4 OverlaidNetworkStructures. 74 2.5.5 UK Provisioning Growth . 74 2.5.5.1 ADSLServices ..................... 79 2.5.5.2 Cable Services . 79 2.5.5.3 Fibre Services . 79 2.5.5.4 BackhaulGrowth. .. .. 80 2.6 Conclusions ................................ 80 3 UK Internet Structure and Future Network Requirements 82 3.1 Introduction................................ 82 3.2 TheUKInternet ............................. 82 3.2.1 InternetNetworkComponents . 83 3.2.1.1 InternetBackbone . 83 3.2.1.2 InternetExchanges. 84 5 3.2.1.3 Interconnection Points . 87 3.2.1.4 Aggregation Points . 87 3.2.1.5 Multiple Three Layer Model . 88 3.2.2 InternetNetworkFunctionality . 91 3.2.2.1 Authentication, Authorisation, and Auditing . 91 3.2.2.2 Protocol and / or Application Support . 93 3.2.2.3 Service Provision . 94 3.2.3 ModelStructures ......................... 95 3.2.4 Cost Modelling . 97 3.2.4.1 Last Mile Charges . 98 3.2.4.2 AccessNetworkCharges . 98 3.2.4.3 Metro and Core (Backhaul) Network Charges . 98 3.2.4.4 Real World Deployability and Composibility . 99 3.2.4.5 Content Delivery Networks . 100 3.2.4.6 ISP-NPInteraction . 101 3.2.4.7 ISP-ISPInteraction. 106 3.2.4.8 ISPCachingModel. 107 3.2.4.9 NPCachingModel . .. .. 109 3.2.5 AccessNetworkModel . 110 3.2.6 Internettraffic........................... 112 3.2.7 TrafficPatterns .......................... 114 3.2.7.1 HTTPTraffic...................... 114 3.2.7.2 P2PTraffic ....................... 115 3.2.7.3 OtherTraffic ...................... 115 3.2.7.4 StreamingTrafficGrowth . 115 3.2.7.5 Future Trends in Streaming . 117 3.2.8 Thecloud ............................. 119 3.2.9 TheRoleoftheISP ....................... 119 3.3 Next Generation Network Requirements . 120 3.3.1 RoutingRequirements . 121 3.3.1.1 Routing Scalability . 121 3.3.1.2 Traffic Engineering . 121 3.3.1.3 Multi-homing . 122 3.3.1.4 Simplified Internal Renumbering . 122 3.3.1.5 Modularity, Composability, and Seamlessness . 122 3.3.1.6 Routing Quality . 122 6 3.3.1.7 Location and identification split . 123 3.3.1.8 Scalable mobility support . 123 3.3.1.9 Routing security . 123 3.3.1.10 Deployability . 123 3.3.2 ServiceRequirements. 123 3.3.2.1 Packetbasedtransfer. 124 3.3.2.2 Separation of control and data functionality . 124 3.3.2.3 Separating service provision and transport functionality125 3.3.2.4 Service building blocks . 125 3.3.2.5 Quality of service provision (end-to-end) . 126 3.3.2.6 Interworking with legacy networks . 126 3.3.2.7 Generalised mobility . 126 3.3.2.8 User access to multiple service providers . 126 3.3.2.9 End user transparency of service . 127 3.3.3 Network Intelligence . 127 3.3.3.1 Intelligent Caching . 127 3.3.3.2 Intelligent Service Provision . 128 3.3.4 ComparingImplementations . 128 3.4 NextGenerationNetworkModel . 131 3.5 Conclusions ................................ 132 4 Hierarchical Network Topographical Routing 133 4.1 Introduction...............................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages312 Page
-
File Size-