Supernova Nucleosynthesis

Supernova Nucleosynthesis

Supernova Nucleosynthesis Keiichi Maeda Inst. for the Phys. and Math. of the Universe (IPMU), University of Tokyo SNe as the Origin of Elements Up to O (+ s-process) Stellar Evolution IME (Si, Ca…) + Fe + r-process SN Observations in this Talk Supernova (SN) “Expanding metal- rich nebula” SN Remnant Galactic wind →Cluster Galactic chemical evolution Stellar Evolution and Supernovae SNIa CC-SN H-burning WS, 2009.2.19-20 Ia Supernova Classification Thermonuclear exp. of white dwarf H Fe Type II II/Ib/Ic Core-Collapse (CC) of Fe massive stars Ca Fe Si H-richH-rich S Si Type Ia Ca O He HeHe He Type Ib Fe Na Si O C+OC+O Type Ic SiSi FeFe @ maximum brightness (~ a few weeks): – Expanding optically thick medium → P-Cygni. Core-collapse SN – Standard Picture • Core-collapse → proto NS + bounce shock → shock stalled (ram pressure + Fe dissociation) →ν from proto NS (~ 3 ×10 53 erg) →1% of ν deposited, shock revival → explosion w/ ~ 10 51 erg. • Caveat • do not explode in (1D) sims. • Multi-D effects favored. Inside Fe core (typically decoupled from the envelope) Fe core CC-SN Nucleosynthesis Si core O core Before SN • Explosive burning. 3 4 • EK ~ (4π/3) R aT 3 1/4 • T∝(E K/R ) Shock Wave 9 • T9 = T/10 K > 5: Si-burn. 56 Ni, He, Fe -peak • T9 = 4-5: incomplete Si-burn. Si, S, Fe, Ar, Ca • T9 = 3-4: O-burn. O, Si, S, Ar, Ca • T9 = 2-3: C,Ne-burn. After SN Depends on O, Mg, Si, Ne • EK, “mass cut”, and M ms . • + Asymmetry (later). Compact object Ejected (“mass cut”) Mr 56 Ni important in theory & observation • Theory: – Produced in the innermost region. • Observation. – SNe Ia/b/c powered by 56 Ni→56 Co→56 Fe . ~ week ~ 100 days Flow • 8-10M Í • 10 - 20(?)M Í • 20 -100M Í • 100 – 300M Í • >300M Í • White Dwarf 8-10M Í : ONeMg Core-Collapse Nomoto 1984 • Degenerate ONeMg core. – T not reached to neon ignition. – Electron capture →Collapse→NS . • 24 Mg(e -, ν) 24 Na(e -, ν) 20 Ne. • 20 Ne(e -, ν) 20 F(e -, ν) 20 O. Kitaura+ 2006 r [km] • Explosion even in 1D simulations. • Standard ν-driven explosion. • Small binding energy in the envelope + steep density gradient. Trajectories 50 • EK < 10 erg. 56 Kitaura+ 2006 • M( Ni) < 0.015M Í Time [ms] Wanajo+ 2009 ~ 0.002 – 0.004M Í 8-10M Í : ONeMg Core-Collapse Wanajo+ 2009 • Mostly Fe-peak. Log X • Neutron-rich isotopes. • Little IME (density too low in envelope). Log (X/X Í) A Mr 10-100M Í : Fe CC • Simulations do not produce SNe as energetic as observed…, anyway they explode observationally . • 2D/3D effects? Blondin + 2003 “SASI - Standing Accretion Shock Inst.” “Observational” 56 EK and M( Ni) vs. M ms → Mej derived by modeling obs. Mej →Mms assumes evo. Model. The low mass end of CC-SNe? Why matter? • 8-12M Í They may not be dramatic, • 12 - 20(?)M Í but should be numerous. • 20 -100M Í • 100 – 300M Í • >300M Í • White Dwarf Í The low mass end of CC-SNe? From Pre-SN images SN 2005cs, HST Smartt+ 2009 Type II (Wang & Filippenko) Standard IMF→ The low-mass end important The low mass end of CC-SNe? • SN Ib 2005cz in an elliptical. SN Ib 2005cz Kawabata, KM , Nomoto+, 2010, Nature, 465, 326 • Small O/Ca → Small O-core: M ms ~ 8 – 12M Í. 51 56 • EK << 10 erg, M( Ni) < 0.02M Í (ONeMg-CC? Fe-CC?). The low mass end of CC-SNe? • Very faint SN I(?) 2008ha. Valenti+09; Foley+ 09 • A fallback CC-SN model. Moriya+2010 • Mms ~ 13M Í. 48 • EK = 1.2 ×10 erg. • Mej = 0.074M Í. 56 • M( Ni) = 0.003M Í. • NS→BH formation? Mass fractions = M i / M ej (Moriya, Tominaga, Tanaka+ 2010) The low mass end of CC-SNe? SNe II w/ progenitor detected. 08ha? Asymmetry in SN explosions (> 10M Í) • 8-10M Í • 10 - 20(?)M Í • 20(?) -100M Í • 100 – 300M Í • >300M Í • White Dwarf Í Asymmetry – Observations (> 10M Í) KM , Kawabata, Mazzali+ 2008, Science, 319, 1220 [OI]6300 @ 1 year for 18 SNe Observations : Subaru/FOCAS Accumulating evidences… e.g., Polarization ( Tanaka , Kawabata, KM+ 2008, 2009) Nucleosynthesis in “bipolar” CC-SNe Spherical Bipolar Zn, Co Fe( 56 Ni) Mn, Cr O C Zn, Co, Ti →Fe(Ni)→Mn, Cr→O, C Heavier elm. Easier to be ejected. 4/1 − 4/3 Tshock ~ 24E52 r E(isotropic) ↑ → Tshock ↑&V ↑ V ∝ E / M Nagataki+97; KM+ 2002, ApJ, 565, 405; KM & Nomoto, 2003, ApJ, 598, 1163; Tominaga, KM, Umeda+ 2007, Tominaga 2009 Spherical Bipolar X/X solar X/X solar Zn Ti O O Mg Zn Mg Co Mn Ti Co Mn A A KM & Nomoto 2003 • (Zn,Co,Ti)/Fe↑, (Mn,Cr)/Fe↓ SN→ISM→Star – Similar trends seen in metal-poor halo stars (early chemical evolution). – “Asphericity” may be an important function in understanding the Chemical Evo. – KM & Nomoto 2003; Tominaga, KM+, Umeda+ 2007; Tominaga 2009 20(?)-100M Í : Fe CC “Hypernovae” From Supernovae to Hypernovae. • 8-10M Í • 10 - 20(?)M Í • 20(?) -100M Í • 100 – 300M Í • >300M Í • White Dwarf Í 20(?)-100M Í : Fe CC • “Traditional ” idea: – Mms > 20-30M Í→ BH, No SN . • New Observations : – They do explode . – Energetic – “Hypernovae ” – Sometimes w/ GRBs. “Observational” 56 EK and M( Ni) vs. M ms → Mej derived by modeling obs. Mej →Mms assumes evo. Model. Iwamoto+ 1998 Hypernovae SN 1994I GRB030329 Time SN 1998bw SN Ic 2003dh 1/2 -1/2 Line Width ∝ EK Mej • Some w/ GRBs. Galama+ 1998; Hjorth+2003; Stanek+2003 Hypernova Nucl. syn. • Larger E K – Larger amount of Fe-peak and IME. Xi Xi 51 E51 =E/10 erg=1 E51 =10 Mr Mr Fe-peak IME (Si, Ca…) Nakamura+01, Umeda+02 SN 1998bw Typical SN Asymmetry again KM+, 2006ab [OI] 6300, 6363 1998bw Asp, Z, E 51 =20 Z 1998bw < 30 o R Sph, E 51 =50 • Hypernovae seem to have larger asphericity than others. – Both “Energy” & “asphericity” important in nucleosynthesis. Theory… e.g., Fryer+ 1999 NS or BH? KM+, 2007, ApJ, 658, L5 • Important functions in nucleosynthesis. – Energy, asphericity, “mass cut” vs. M ms . [OI] [CaII] [FeII] [NiII] NS? BH? Transition at ~20M Í? SN 2006aj. 58 M( Ni) ~ 0.05M n-rich ⇒NS formation (?) > 100M Í : PISN and beyond • 8-10M Í • 10 - 20(?)M Í • 20(?) -100M Í • 100 – 300M Í • >300M Í • White Dwarf Fe Collapse 100-300M Í : Pair Inst. SNe Pair • Radiation dominated: P∝ργ=ρ 4/3 • e- e+ creation→Γ<4/3, Collapse 56 →O-burn runway→M( Ni) = 0.05 – 30M Í Metal Poor Stars (Early Universe) No Indication Nearby SNe (Present Universe )? Scannapieco + 2005 Umeda & Nomoto 2002 ~200day! 56 <<Solar M( Ni)~3M Í [Zn/Fe] Solar 6M Í [Fe/H] PISN – Observational counterpart? • SN Ic 2007bi = bright + 56 Ni/Co/Fe heating. Gal-yam+ 2009 56 – Mej > 40M Í, M( Ni) > 6M Í. 07bi – Cons. w/ PISN. Gal-yam+ 2009 Not conclusive yet. Typical SN Ic • CC-SN w/ M ms ~ 100M Í. 07bi Moriya, PISN Tominaga, CC-SN Tanaka+ 2010b Typical SN Ic 100 days 100 days logT Another candidate for a PISN? c • SN IIn 2006gy = bright + interacting. mass loss CSM by pulsational mass loss Not conclusive yet. logρ c SN Interaction Typical SN Ic 100 days PISN CC-SN Pul. PISN Model (Interaction w/ wind) Core-Collapse Model Woosley, Blinnikov, Heger, 07 (56 Ni heating) Kawabata+ 2009 > 300M Í : Fe Core-collapse ~ 300 – 1000M Í Ohkubo+, 2009 at leaving MS Yoshida+, 2008 Log R Different accretion rate Accretion Mass -2 Proto-star core ~ 10 M Í ~ 30 – 100M Í at ZAMS 3 5 Primordial cloud ~ 10 - 10 M Í -3 High Accretion Rate (>10 M Í /year) … Only for “Zero” Metal Fe core for 25M star > 300M Í : Fe CC Fe core for 500&1000M stars Log ρ Fe Collapse Pair Mr/M ms Log T 6 t~2 10 yr ~ 10-30% of M ms ~13 – 25M Í Ohkubo, Umeda, KM+, 2006, ApJ, 645, 1352 Hypothesized exp. [X/Fe] Ohkubo+ 2006 Intra Galactic Medium OK Z 56 • M( Ni)=5M Í Metal-Poor Halo stars • M(Si)=4M Í • M(O)=24M Í • M(He)=280M Í • M(H)=190M Í Never Fit Z • MBH =480M Í Nucleosynthesis ← E, Geometry → M(BH) Atomic Number Thermonuclear SNe (Type Ia) Type Ia SN = Distance ladder • 8-10M Í • 10 - 20(?)M Í • 20(?) -100M Í • 100 – 300M Í • >300M Í • White Dwarf Thermonuclear SNe (Type Ia) • Consensus: – Chandrasekhar-mass white-dwarf (~1.4M Í). –Thermonuclear explosion. –No central object left. 56 –Fe producer, typically M( Ni) ~ 0.6M Í. –Standard candles (luminosity estimate possible). SNe Ia – classical picture Deflagration • Two modes of flames. – Deflagration (subsonic). – Detonation (supersonic). • Favored scenarios: – Pure deflagration. n-rich • e-capture. Def. -Det. – n-rich stable Fe-peak. W7 by Nomoto+ 1984 – Delayed det. (Def. →det.). • Little e-capture (Ye = const.). – 56 Ni/stable-Fe set by progenitor. • C, O-burning outside. Khokhlow 1991; Iwamoto+ 99 KM, Taubenberger, Sollerman+ 2010, ApJ, 708, 1703 Asymmetry • “Off-set ” ignition. • Doppler shifts in late-phases. • Solves “unresolved” spectral diversity. Fe -peak elements Deflagration Detonation deflagration time detonation KM, Roepke, Fink+ 2010, ApJ, 712, 624 (cf. Kasen+ 2009) Asymmetry • “Off-set ” ignition. • Doppler shifts in late-phases. Branch+ 1988; Benetti+ 2005 • Solves “unresolved” spectral diversity. Si II absorption velocity Si II absorption velocity / day HVG HVG LVG LVG Days Decline Rate = Luminosity indicator • Spectral evolution do not correlate with the “luminosity”.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    41 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us