High Frequency BJT Model & Cascode BJT Amplifier

High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier Kenneth R. Laker, update 01Oct14 KRL 1 ESE319 Introduction to Microelectronics Gain of 10 Amplifier – Non-ideal Transistor RC R1 C in V CC RS R2 RE v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that we have ignored in our low frequency and mid-band models. Kenneth R. Laker, update 01Oct14 KRL 2 ESE319 Introduction to Microelectronics Sketch of Typical Voltage Gain Response for a CE Amplifier ∣Av∣dB Low Midband High Frequency ALL capacitances are neglected, i.e. Frequency Band External C's s.c. Band Internal C's o.c. Due to external blocking and by- 3dB Due to BJT parasitic pass capacitors. capacitors Cπ and Cµ. External C's s.c. Internal C's o.c. 20log10∣Av∣dB f Hz f L f H (log scale) BW = f H − f L≈ f H GBP=∣Av−mid∣BW Kenneth R. Laker, update 01Oct14 KRL 3 ESE319 Introduction to Microelectronics High Frequency Small-signal Model (Fwd. Act.) C r x C v be Two capacitors and a resistor added to mid-band small signal model. ● base-emitter capacitor, Cµ ● base-collector capacitor, Cπ ● resistor, , representing the base terminal resistance ( ); rx rx << rπ ignored in hand calculations. Kenneth R. Laker, update 01Oct14 KRL 4 ESE319 Introduction to Microelectronics High Frequency Small-signal Model (Fwd. Act.) SPICE/MultiSim C r x CJC = C µ0 CJE = C je0 TF = τ C F RB = r v x be C =C deC je≈C de2C je0≈C de C 0 C je0 C = C = I C m je m C g i V CB V EB de= m F= F Note C= dt 1 1 V T d v 0cb 0eb C ≈2C 0 C = base-charging (diffusion) cap Non-linear, voltage controlled de = forward-base transit time m = junction grading coefficient 0.2 to 0.5) τF Kenneth R. Laker, update 01Oct14 KRL 5 ESE319 Introduction to Microelectronics High Frequency Small-signal Model (IC) C π C µ C = collector-substrate depletion capacitance, ignored in hand calcs. CS Kenneth R. Laker, update 01Oct14 KRL 6 ESE319 Introduction to Microelectronics High Frequency Small-signal Model The transistor parasitic capacitances have a strong effect on circuit high frequency performance! ● C attenuates base signal, decreasing v since X → 0 (short circuit) π be Cπ at very high-frequencies. ● ● As we will see later; is principal cause of gain loss at high-frequencies. Cµ At the base base-collector looks like a capacitor of value between Cµ k Cµ base-emitter, where k > 1 and may be >> 1. C r x C ● This phenomenon is called the Miller Effect. Kenneth R. Laker, update 01Oct14 KRL 7 ESE319 Introduction to Microelectronics Prototype Common Emitter Circuit V CC C R C RS b c vo RS C in vo + v R r be g v B vs RB C m be R vs - C R C V B E byp e At high frequencies High frequency large blocking and bypass small-signal ac model capacitors are “short circuits” Kenneth R. Laker, update 01Oct14 KRL 8 ESE319 Introduction to Microelectronics Multisim Simulation C 2 pF RS 50 b c vo v v RB r be g v Mid-band gain @ 100 kHz s C m be RC 50k 40mS v 2.5k 12 pF be 5.1k e o Av−mid=−g m RC=−20446dB@ 180 Gain @ 8.69 MHz Kenneth R. Laker, update 01Oct14 KRL 9 ESE319 Introduction to Microelectronics Introducing the Miller Effect C RS b c vo v v RB r be g m vbe s C RC e The feedback connection of C between base-collector causes it to appear in the amplifier like a large capacitor 1 − K C between the base-emitter terminals. This phenomenon is called the “Miller effect” and capacitor multiplier “1 – K ” acting on C equals the CE amplifier mid-band gain, i.e. K=Av−mid =−g m RC NOTE: CB and CC amplifiers do not suffer from the Miller effect, since in these amplifiers, one side of C is connected directly to ground. Kenneth R. Laker, update 01Oct14 KRL 10 ESE319 Introduction to Microelectronics Miller's Theorem 1 Z= j 2 f C C R S b c v I Z −I o + + i -i r vbe g v V vs RB C m be R be V o C <=> Av−mid V be - - e RB∥r ≫RS V o =Av−mid=−g m RC V be vo vo Av−mid= ≈ =−g m RC vs vbe Kenneth R. Laker, update 01Oct14 KRL 11 ESE319 Introduction to Microelectronics Miller's Theorem I I I 2=−I = 1 Z I 1=I I 2=−I + + + + V 1 Av V 1 V 2 V 1 Z Z V 2=Av V 1 <=> 1 2 - - - - V 1 V 1 Z V 1−V 2 V 1− Av V 1 V 1 Z 1= = = I =I 1= = = => Z Z Z I 1 I 1−Av 1−Av 1 Z 1= 1 j 2 f C 1−Av V 2− V 2 V 2−V 1 Av V 2 V V Z −I =I = = = 2 2 2 Z 2= = = ≈Z if A >> 1 Z Z Z => I −I 1 v 2 1− 1 A 1− v Ignored in A V V v 2 2 1 practical Z 2= = ≈ I 2 −I j 2 f C circuits Kenneth R. Laker, update 01Oct14 KRL 12 ESE319 Introduction to Microelectronics Common Emitter Miller Effect Analysis Determine effect of C : I C C Using phasor notation: RS V be I =−g V I b c RC m be C V o I or RC V be V RB r g m V be V o=I R RC = −g m V beI C RC s C RC C where e 1 I V V C = be− o j 2 f C I C = V beg m V be RC−I C RC j 2 f C Note: The current through C depends only on V be ! 1g m RC j2 f C I C = V be 1 j2 f R C C Kenneth R. Laker, update 01Oct14 KRL 13 ESE319 Introduction to Microelectronics Common Emitter Miller Effect Analysis II I C C V RS b be c From slide 13: V o I R 1g R j2 f C C m C vbe V R r g m V be I C = V be s B C RC 1 j2 f R C C e 1g m RC j2 f C I C = V be≈ 1g m RC j2 f C V be= j2 f C eq V be 1 j2 f R C C 2 f RC C ≪1 Miller Capacitance C : C =1g R C =1−A C eq eq m C v Kenneth R. Laker, update 01Oct14 KRL 14 ESE319 Introduction to Microelectronics I I C C C C V R V RS be S b be c b c V o V o I RC I R g V C V s RB r m be r g V C RC V s RB C m be R C C C eq e e C eq=1−AvC =1g m RC C Kenneth R. Laker, update 01Oct14 KRL 15 ESE319 Introduction to Microelectronics Common Emitter Miller Effect Analysis III C eq=1g m RC C For our example circuit (C = 2 pF): µ 1g m RC=10.040⋅5100=205 C eq=205⋅2 pF≈410 pF Kenneth R. Laker, update 01Oct14 KRL 16 ESE319 Introduction to Microelectronics Simplified HF Model C RS V be I b C c V o vbe g V ' V s RB r C m be R r R R ro RC RL L= o∥ C∥ L e C ' RB∥r ' RS V be I V s=V s b C c V o RB∥rRS ' ' v RS =r∥ RB∥RS r be g V ' V s RB C m be RL e Thevenin Equiv. Kenneth R. Laker, update 01Oct14 KRL 17 ESE319 Introduction to Microelectronics Simplified HF Model C ' R' r R R RS I L= o∥ C∥ L b C c V o ' R =r ∥ R ∥R V be S B S ' RB∥r ' r g V ' V s RB C m be V s=V s RL RB∥rRS e Miller's Theorem ' RS b c V o I V be C ' r g V ' V s RB m be C C eq RL C eq=1g m RC C e C C C tot = eq C tot Kenneth R. Laker, update 01Oct14 KRL 18 ESE319 Introduction to Microelectronics Simplified HF Model R' S b c V V o ' I be RL=ro∥RC∥RL C ' r g V ' ' V s RB m be C C eq RL RS =r∥ RB∥RS ' RB∥r e V s=V s ≈V s RB∥r RS C tot C tot =C 1g m RC C V o 1 j2 f C dB / tot V V be= V s ' ∣ s∣ 1/ j2 f C totRS ' ' ' V o −g m RL −g m RL Av f = ≈ ' = V s 1 j 2 f C R f tot S 1 j f H ' 1 Av−mid=−g m RL and f H = ' 2C tot RS Kenneth R. Laker, update 01Oct14 KRL 19 ESE319 Introduction to Microelectronics Multisim Simulation C 2 pF RS 50 b c vo v v RB r be g v s C m be RC 50k 40mS v 2.5k 12 pF be 5.1k Mid-band gain @ 100 kHz e o Av−mid=−g m RC=−20446dB@ 180 C tot=12 pF205⋅2 pF ≈422 pF 1 1 f H ≈ f −3dB= ' ≈ ≈7.54 MHz Gain @ 8.69 MHz 2C tot RS 2 422 pF 50 Kenneth R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us