
Bibliography 1. S. Abbott, Understanding Analysis, Undergraduate Texts in Mathematics (Springer, New York, 2001) 2. A.D. Abrams, M.J. Paris, The probability that (a, b) = 1. College Math. J. 23(1), 47 (1992) 3. E.S. Allen, The scientific work of Vito Volterra. Amer. Math. Mon. 48, 516–519 (1941) 4. N. Altshiller, J.J. Ginsburg, Solution to problem 460. Am. Math. Mon. 24(1), 32–33 (1917) 5. R.N. Andersen, J. Stumpf, J. Tiller, Let π be 3. Math. Mag. 76(3), 225–231 (2003) 6. T. Apostol, Another elementary proof of Euler’s formula for ζ (2k). Am. Math. Mon. 80(4), 425–431 (1973) 7. T.M. Apostol, Mathematical Analysis: A Modern Approach to Advanced Calculus (Addison- Wesley Publishing Company, Inc., Reading, 1957) 8. R.C. Archibald, Mathematicians and music. Am. Math. Mon. 31(1), 1–25 (1924) 9. J. Arndt, C. Haenel, Pi—Unleashed, 2nd edn. (Springer, Berlin, 2001). Translated from the 1998 German original by Catriona Lischka and David Lischka 10. R. Ayoub, Euler and the zeta function. Am. Math. Mon. 81(10), 1067–1086 (1974) 11. B.S. Babcock, J.W. Dawson Jr., A neglected approach to the logarithm. Two Year College Math. J. 9(3), 136–140 (1978) 12. D.H. Bailey, J.M. Borwein, P.B. Borwein, S. Plouffe, The quest for pi. Math. Intell. 19(1), 50–57 (1997) 13. W.W. Ball, Short Account of the History of Mathematics, 4th edn. (Dover Publications Inc., New York, 1960) 14. J.M. Barbour, Music and ternary continued fractions. Am. Math. Mon. 55(9), 545–555 (1948) 15. C.W. Barnes, Euler’s constant and e. Am. Math. Mon. 91(7), 428–430 (1984) 16. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis, 2nd edn. (Wiley, New York, 1992) 17. A.F. Beardon, Sums of powers of integers. Am. Math. Mon. 103(3), 201–213 (1996) 18. A.H. Bell, The "cattle problem." By Archimedes 251 B.C. Am. Math. Mon. 2(5), 140–141 (1885) 19. H.E. Bell, Proof of a fundamental theorem on sequences. Am. Math. Mon. 71(6), 665–666 (1964) 20. J. Bell, On the sums of series of reciprocals. Originally published as De summis serierum recip- rocarum, Commentarii academiae scientiarum Petropolitanae 7, 123134 (1740) and reprinted in Leonhard Euler, Opera Omnia, Series 1: Opera mathematica, vol. 14, Birkhäuser, 1992. Bell’s paper available at http://arxiv.org/abs/math/0506415 and Euler’s text, numbered E41, is available at the Euler Archive, http://www.eulerarchive.org 21. W.W. Bell, Special Functions for Scientists and Engineers (Dover Publications Inc., Mineola, 2004). Reprint of the 1968 original 22. R. Bellman, A note on the divergence of a series. Am. Math. Mon. 50(5), 318–319 (1943) © Paul Loya 2017 701 P. Loya, Amazing and Aesthetic Aspects of Analysis, https://doi.org/10.1007/978-1-4939-6795-7 702 Bibliography 23. P. Benacerraf, H. Putnam (eds.), Philosophy of Mathematics: Selected Readings (Cambridge University Press, Cambridge, 1964) 24. S.J. Benkoski, The probability that k positive integers are relatively r-prime. J. Number Theory 8(2), 218–223 (1976) 25. L. Berggren, J. Borwein, P. Borwein, Pi: A Source Book, 3rd edn. (Springer, New York, 2004) 26. B.C. Berndt, Ramanujan’s notebooks. Math. Mag. 51(3), 147–164 (1978) 27. N.M. Beskin, Fascinating Fractions (Mir Publishers, Moscow, 1980). Translated by V.IKisln, 1986 28. F. Beukers, A note on the irrationality of ζ (2) and ζ (3). Bull. Lond. Math. Soc. 11(3), 268–272 (1979) 29. R.P. Boas, Tannery’s theorem. Math. Mag. 38(2), 64–66 (1965) 30. R.P. Boas Jr., A Primer of Real Functions, vol. 13, 4th edn., Carus Mathematical Monographs (Mathematical Association of America, Washington, DC, 1996) 31. J.M. Borwein, P.B. Borwein, Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96(3), 201–219 (1989) 32. J.M. Borwein, Pi and the AGM, 4th edn., Canadian Mathematical Society Series of Mono- graphs and Advanced Texts (Wiley, New York, 1998). Reprint of the 1987 original 33. R.H.M. Bosanquet, An elementary treatise on musical intervals and temperament (London, 1876) (Diapason press, Utrecht, 1987) 34. C.B. Boyer, Fermat’s integration of X n. National Math. Mag. 20, 29–32 (1945) 35. C.B. Boyer, A. History, of Mathematics, 2nd edn. (Wiley, New York, (With a foreword by Isaac Asimov (Revised and with a preface by Uta C, Merzbach), 1991) 36. P. Bracken, B.S. Burdick, Euler’s formula for zeta function convolutions: 10754. Am. Math. Mon. 108(8), 771–773 (2001) 37. D. Bressoud, Was calculus invented in India? College Math. J. 33(1), 2–13 (2002) 38. D. Brewster, Letters of Euler to a German Princess on Different Subjects in Physics and Philosophy (Harper and Brothers, New York, 1834). In two volumes 39. W.E. Briggs, N. Franceschine, Problem 1302. Math. Mag. 62(4), 275–276 (1989) 40. T. J.I’A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd edn. (Macmillan, London, 1926) 41. R.A. Brualdi, Mathematical notes. Am. Math. Mon. 84(10), 803–807 (1977) 42. R. Bumcrot, Irrationality made easy. College Math. J. 17(3), 243–244 (1986) 43. F. Burk, Euler’s constant. College Math. J. 16(4), 279 (1985) 44. F. Cajori, A History of Mathematics, 5th edn. (Chelsea Publishing Co., Bronx, 1991) 45. F. Cajori, A History of Mathematical Notations (Dover Publications Inc., New York, 1993). 2 Vol in 1 edition 46. B.C. Carlson, Algorithms involving arithmetic and geometric means. Am. Math. Mon. 78, 496–505 (1971) 47. D. Castellanos, The ubiquitous π. Math. Mag. 61(2), 67–98 (1988) 48. D. Castellanos, The ubiquitous π. Math. Mag. 61(3), 148–163 (1988) 49. R. Chapman, Evaluating ζ (2) (1999) 50. R.R. Christian, Another completeness property. Am. Math. Mon. 71(1), 78 (1964) 51. J.A. Clarkson, On the series of prime reciprocals. Proc. Am. Math. Soc. 17(2), 541 (1966) 52. B. Cloitre, private communication 53. J.B. Conrey, The Riemann hypothesis. Notices Am. Math. Soc. 50(3), 341–353 (2003) 54. F.L. Cook, A simple explicit formula for the Bernoulli numbers. Two Year College Math. J. 13(4), 273–274 (1982) 55. J.L. Coolidge, The number e. Am. Math. Mon. 57, 591–602 (1950) 56. Fr.G. Costa, Solution 277. College Math. J. 17(1), 98–99 (1986) 57. R. Courant, H. Robbins, What is Mathematics? (Oxford University Press, New York, 1979). An elementary approach to ideas and methods 58. J.W. Dauben, Georg Cantor (Princeton University Press, Princeton, 1990) 59. R. Dedekind, Essays on the Theory of Numbers, "Continuity and Irrational Numbers" (Dover Publications Inc., New York, 1963) Bibliography 703 60. E.J. Dijksterhuis, Archimedes (Princeton University Press, Princeton, 1987). Translated from the Dutch by C. Dikshoorn, Reprint of the 1956 edition 61. U. Dudley, A Budget of Trisections (Springer, New York, 1987) 62. W. Dunham, A historical gem from Vito Volterra. Math. Mag. 63(4), 234–237 (1990) 63. W. Dunham, Euler and the fundamental theorem of algebra. College Math. J. 22(4), 282–293 (1991) 64. E. Dunne, M. Mcconnell, Pianos and continued fractions. Math. Mag. 72(2), 104–115 (1999) ∞ / 65. E. Dux, Ein kurzer beweis der divergenz der unendlichen reihe r=1 1 pr. Elem. Math. 11, 50–51 (1956) 66. P. Erdös, Uber die reihe p. Mathematica Zutphen. B 7, 1–2 (1938) 67. L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt (on transcendental progressions that is, those whose general terms cannot be given algebraically), Commentarii academiae scientiarum Petropolitanae 5, 36–57 (1738). Pre- sented to the St. Petersburg Academy on November 28, 1729. Published in Opera Omnia: Series 1, vol. 14, pp. 1–24, Eneström Index is E19, and is available at EulerArchive.org 68. L. Euler, Variae observationes circa series infinitas (various observations about infinite series). Commentarii academiae scientiarum Petropolitanae 9, 160–188 (1744). Published in Opera Omnia: Series 1, vol. 14, pp. 217–244, Eneström Index is E72, and is available at EulerAr- chive.org 69. L. Euler, Introductio in analysin infinitorum (Introduction to analysis of the infinite. Book I), vol. 1 (Springer, New York, 1988) 70. L. Euler, Introductio in analysin infinitorum (Introduction to analysis of the infinite. Book II), vol. 2 (Springer, New York,√ 1990) 71. H. Eves, Irrationality of 2. Math. Teacher 38(7), 317–318 (1945) 72. H. Eves, Mathematical Circles Squared (Prindle Weber & Schmidt, Boston, 1972) 73. P. Eymard, J.-P. Lafon, The number π (American Mathematical Society, Providence, 2004). Translated from the 1999 French original by Stephen S. Wilson 74. C. Fefferman, An easy proof of the fundmental theorem of algebra. Am. Math. Mon. 74(7), 854–855 (1967) 75. W. Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. (Wiley, New York, 1968) 76. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley, New York, 1971) 77. R. Fenn, The table theorem. Bull. Lond. Math. Soc. 2, 73–76 (1970) 78. D. Ferguson, Evaluation of π. Are Shanks’ figures correct? Mathematical Gazette 30, 89–90 (1946) 79. W.L. Ferrar, A Textbook of Convergence (The Clarendon Press, Oxford University Press, New York, 1980) 80. J. Ferreirós, Labyrinth of thought, 2nd edn. (Birkhäuser Verlag, Basel, 2007) 81. S.R. Finch, Mathematical Constants, vol. 94 (Encyclopedia of Mathematics and its Applica- tions (Cambridge University Press, Cambridge, 2003) 82. P. Flajolet, I. Vardi, Zeta function expansions of classical constants (1996).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages21 Page
-
File Size-