Imaging with Information Field Theory

Imaging with Information Field Theory

Imaging with Information Field Theory Philipp Arras November 28, 2017 Max-Planck Institute for Astrophysics, Garching, Germany Technical University of Munich Introduction Radio Aperture Synthesis dirty image 1011 reconstructed sky × 0.0012 5 4 0.0010 3 0.0008 2 flux 0.0006 1 intensity 0.0004 0 0.0002 1 − Figure 1: Dirty image Figure 2: Reconstructed sky model Supernova remnant 3C391, data from CASA tutorial on NRAO website, VLA, 128 MHz bandwidth, two spectral windows at 4.6 and 7.5 GHz. Reconstructed with RESOLVE + noise estimation, only Stokes I. 1 Inverse Problems True sky model Comes with an infinite number of degrees of freedom. 3 Fields (e.g. ρ : R R≥0) −! ! 2 Inverse Problems Data True sky model Always finite number of degrees of Comes with an infinite number of freedom. degrees of freedom. 3 Data arrays Fields (e.g. ρ : R R≥0) −! −! ! (e.g. vis.shape = (4132094,)) 2 Figure 4: Reconstructed image (! s) (s d) P j Inverse Problems (even worse) U-V-coverage 0.3 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Figure 3: UV coverage (! d) 3 (s d) P j Inverse Problems (even worse) U-V-coverage 0.3 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Figure 3: UV coverage (! d) Figure 4: Reconstructed image (! s) 3 Inverse Problems (even worse) U-V-coverage 0.3 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Figure 3: UV coverage (! d) Figure 4: Reconstructed image (! s) (s d) P j 3 (d s) (s) (s d) = P j(dP) P j P 3 Bayesian Inference Bayesian inference Likelihood Probability to obtain a data set given the signal is known. Definitions s := physical signal, d := data Product Rule of Probabilities aka Bayes' theorem (d s) (s) (s d)= P j P P j (d) P 4 Bayesian inference Prior Available information on the signal, prior to the measurement. Definitions s := physical signal, d := data Product Rule of Probabilities aka Bayes' theorem (d s) (s) (s d)= P j P P j (d) P 4 Bayesian inference Posterior Probability for a signal realization given the measured data. Definitions s := physical signal, d := data Product Rule of Probabilities aka Bayes' theorem (d s) (s) (s d)= P j P P j (d) P 4 Bayesian inference Evidence For inferences on s, normalization factor can be ignored in most cases. Definitions s := physical signal, d := data Product Rule of Probabilities aka Bayes' theorem (d s) (s) (s d)= P j P P j (d) P 4 This is a lot! Theoretically, infinite-dimensional. Practically, e.g. 2 5 Npix = 256 ; Nvalues = 10 655 Mio. dimensions. ! Probability Distributions Over All Possible Images ·10−51 4 ) d j s ( P 2 0 Npix Nvalues dimensions · 5 Probability Distributions Over All Possible Images ·10−51 4 ) d j s ( P 2 0 Npix Nvalues dimensions · This is a lot! Theoretically, infinite-dimensional. Practically, e.g. 2 5 5 Npix = 256 ; Nvalues = 10 655 Mio. dimensions. ! Need to extract information about (s d) P j where s is a field. 5 Information Field Theory Provides dictionary: • Statistical mechanics & Bayesian inference Field theory Define (s; d) := log (s; d). Then: • H − P (s; d) e−H(s;d) (s d) = P = : P j (d) R s e−H(s;d) P D Information Field Theory Information Field Theory := Information theory with fields. • 6 Define (s; d) := log (s; d). Then: • H − P (s; d) e−H(s;d) (s d) = P = : P j (d) R s e−H(s;d) P D Information Field Theory Information Field Theory := Information theory with fields. • Provides dictionary: • Statistical mechanics & Bayesian inference Field theory 6 Information Field Theory Information Field Theory := Information theory with fields. • Provides dictionary: • Statistical mechanics & Bayesian inference Field theory Define (s; d) := log (s; d). Then: • H − P (s; d) e−H(s;d) (s d) = P = : P j (d) R s e−H(s;d) P D 6 Information Field Theory Theory on continuous spaces, actual calculations discretized • 7 Information Field Theory Theory on continuous spaces, actual calculations discretized • 7 Wiener filter demo See Jupyter Notebook on google drive. −! 8 Wiener filter demo See Jupyter Notebook on google drive. −! 8 Wiener filter demo See Jupyter Notebook on google drive. −! 8 Wiener filter demo See Jupyter Notebook on google drive. −! 8 IFT actually works. 8 Imaging the Radio Sky: RESOLVE Challenges to be addressed Extended sources (exclude point sources for now). • Uncertainty maps. • Low Signal-to-Noise performance. • Reproducibility. • 9 Data Prior power spectrum, Posterior power spectrum 2 10 power smoothness 100 2 10− correlation 4 10− 6 prior, flat Inv- 10− 100 101 102 harmonic mode Gamma prior Data model d = Res + n RESOLVE (without noise estimation) U-V-coverage 0.3 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Inference algorithm 10 Prior power spectrum, Posterior power spectrum 2 10 power smoothness 100 2 10− correlation 4 10− 6 prior, flat Inv- 10− 100 101 102 harmonic mode Gamma prior Data model d = Res + n RESOLVE (without noise estimation) U-V-coverage 0.3 Data 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Inference algorithm 10 Prior power spectrum, Posterior power spectrum 2 10 power smoothness 100 2 10− correlation 4 10− 6 prior, flat Inv- 10− 100 101 102 harmonic mode Gamma prior RESOLVE (without noise estimation) U-V-coverage 0.3 Data 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − 0.4 0.2 0.0 0.2 0.4 − − u Inference algorithm Data model d = Res + n 10 Posterior power spectrum 2 10 power 100 2 10− correlation 4 10− 6 10− 100 101 102 harmonic mode RESOLVE (without noise estimation) U-V-coverage 0.3 Data 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − Prior 0.4 0.2 0.0 0.2 0.4 power− spectrum,− u Inference smoothness algorithm prior, flat Inv- Gamma prior Data model d = Res + n 10 Information Hamiltonian (without noise estimation) (d; s; τ ) = log (d; s; τ ) H − P 1 s y −1 s 1 = 2 (d Re ) N (d Re ) + 2 log N | − {z− j }j Likelihood 1 y −1 1 + 2 s S s + 2 log S | {z j }j Prior / regularization y y −τ 1 y + (α 1) τ + q e + 2 τ T τ | − {z } hyper-prior with τ being the power spectrum of signal covariance S correlation structure: X τk S = e Sk k 11 Inference Algorithm (without noise estimation) Approximate posterior: • (s d) = (s m; D) δ(τ τ ∗) P j G − · − Solve for m and τ ∗ (with NIFTy's1 help): • d Map m Power spectrum τ ∗ 1https://gitlab.mpcdf.mpg.de/ift/nifty 12 Posterior power spectrum 2 10 power 100 2 10− correlation 4 10− 6 10− 100 101 102 harmonic mode RESOLVE (without noise estimation) U-V-coverage 0.3 Data 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 − Prior 0.4 0.2 0.0 0.2 0.4 power− spectrum,− u Inference smoothness algorithm prior, flat Inv- Gamma prior Data model d = Res + n 13 power spectrum 2 10 power 100 2 10− correlation 4 10− 6 10− 100 101 102 harmonic mode RESOLVE (without noise estimation) U-V-coverage 0.3 Data 0.2 0.1 0.0 v 0.1 − 0.2 − 0.3 Prior − Posterior 0.4 0.2 0.0 0.2 0.4 power− spectrum,− u Inference smoothness algorithm prior, flat Inv- Gamma prior Data model d = Res + n 13 3C391 again. dirty image 1011 × 5 4 3 2 flux 1 0 1 − 14 3C391 again. dirty image 1011 × 5 4 3 2 flux 1 0 1 − 14 3C391 again. reconstructed sky 0.0012 0.0010 0.0008 0.0006 intensity 0.0004 0.0002 14 3C391 again. 14 power spectrum 2 10 power 100 2 10− correlation 4 10− 6 10− 100 101 102 harmonic mode 3C391 again. relative error 4.0 3.5 3.0 2.5 2.0 1.5 relative error 1.0 0.5 14 power spectrum 2 10 power 100 2 10− correlation 4 10− 6 10− 100 101 102 harmonic mode 3C391 again. relative error 4.0 3.5 3.0 2.5 2.0 1.5 relative error 1.0 0.5 14 Imaging the Gamma-Ray Sky: D3PO D3PO D3PO: Denoise, Deconvolve and Decompose Photon Observations. • Assumptions: Like RESOLVE but with Poisson statistics and add • point sources. Paper and codes: www.mpa-garching.mpg.de/ift/d3po. • 15 D3PO in action: 6.5 years all sky data Data... Selig, Vacca, Oppermann, Enlin (2015) 16 D3PO in action: 6.5 years all sky data Data...Log-data... Selig, Vacca, Oppermann, Enlin (2015) 16 D3PO in action: 6.5 years all sky data Data...Log-data...Denoised... Selig, Vacca, Oppermann, Enlin (2015) 16 D3PO in action: 6.5 years all sky data Data...Log-data...Denoised...Deconvolved... Selig, Vacca, Oppermann, Enlin (2015) 16 D3PO in action: 6.5 years all sky data Data...Log-data...Denoised...Deconvolved...Decomposed. Selig, Vacca, Oppermann, Enlin (2015) 16 D3PO in action: 6.5 years all sky data Data...Log-data...Denoised...Deconvolved...Decomposed.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    77 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us