Russian Academy of Sciences, Far Eastern Branch Botanical Garden-Institute botanica pacifica A journal of plant science and conservation Volume 9, No. 1 2020 VLADIVOSTOK 2020 Botanica Pacifica. A journal of plant science and conservation. 2020. 9(1): 53–61 DOI: 10.17581/bp.2020.09109 Do patterns of intra-specific variability and community weighted-means of leaf traits correspond? An example from alpine plants Vladimir G. Onipchenko1*, Artem O. Rozhin1, Vadim E. Smirnov2,3, Asem A. Akhmetzhanova1, Tatiana G. Elumeeva1, Olga P. Khubieva4, Ksenia V. Dudova1, Nadezhda A. Soudzilovskaia5 & Johannes H.C. Cornelissen6 Vladimir G. Onipchenko1* e-mail: [email protected] ABSTRACT 1 Intraspecific variability of the traits is usually less than interspecific, but directions Artem O. Rozhin of inter- and intraspecific variation along environmental gradients are not well e-mail: [email protected] studied. For 17 alpine species we test a hypothesis that the direction of intraspe- Vadim E. Smirnov2,3 cific variation in leaf traits among different communities along an environmental e-mail: [email protected] gradient coincides consistently with community weighted mean (CWM) trait varia- tion at the community level along the same gradient. We obtained two groups of Asem A. Akhmetzhanova1 leaf traits according to their response to CWM and topographic (snow depth and e-mail: [email protected] snow melt) gradients. For leaf mass and area intraspecific variation corresponded 1 to CWM variation among communities. SLA, water content and leaf thickness Tatiana G. Elumeeva patterns within species changed directly among communities according to the e-mail: [email protected] toposequence (snowmelt gradient). These results are well expressed for forbs, but Olga P. Khubieva4 mostly they were not significant for graminoids. For leaf area we obtained op- e-mail: [email protected] posite response of forbs and graminoids to snowmelt gradient. Forbs increased, but graminoids decreased leaf area when snow depth increased. Intraspecific trait Ksenia V. Dudova1 variation across natural gradients does not necessarily follow that for interspecific e-mail: [email protected] or community-level variation. Nadezhda A. Soudzilovskaia5 Keywords: leaf functional traits, alpine plant communities, specific leaf area, com- e-mail: [email protected] munity weighted mean, Caucasus Johannes H.C. Cornelissen6 РЕЗЮМЕ e-mail: [email protected] Онипченко В.Г., Рожин А.О., Смирнов В.Э., Ахметжанова А.А., Елуме- ева Т.Г., Хубиева O.П., Дудова К.В., Судзиловская Н.А., Корнелиссен Х.Г. Cогласуются ли внутривидовая изменчивость и средневзве шен­ 1 Lomonosov Moscow State University, ные значения признаков листа в сообществе (на примере альпийских Faculty of Biology, Dept. Ecology and рас тений)? Внутривидовое варьирование признаков, как правило, меньше, Plant Geography, Moscow, Russia чем межвидовое, однако направления меж- и внутривидового варьирования 2 Center for Forest Ecology and по градиентам среды изучены недостаточно. Для 17 альпийских видов мы Productivity RAS, Moscow, Russia про верили гипотезу о том, что направление внутривидовой изменчивости 3 по признакам листа между разными сообществами по градиенту среды по- Institute of Mathematical Problems of следовательно совпадает со средневзвешенными значениями признаков в Biology RAS, Pushchino, Russia сообществах (CWM) по тому же градиенту. Мы выделили две группы при- 4 North Caucasian State Academy, знаков листа на основе выявленных связей с CWM и топографическими (глу- Cherkessk, KChR, Russia бина снежного покрова и время схода снега) градиентами. Для массы листа 5 Institute of Environmental Sciences и его площади внутривидовое варьирование соответствует варьированию CML, Leiden University, Leiden, CWM среди сообществ. Удельная листовая поверхность, обводненность ли- The Netherlands ста и его толщина внутри видов изменяются в соответствии с расположе- 2 нием сообществ на склоне (градиент времени снеготаяния). Эти результаты Department of Ecological Science, хорошо выражены для видов разнотравья, но в большинстве случаев не зна- Faculty of Earth and Life Sciences, Vrije чимы для злаковых. Для площади листа мы показали противоположную ре- Universiteit Amsterdam, Amsterdam, акцию этих двух групп (разнотравье и злаки) по градиенту снегонакопления. The Netherlands Площадь листа у видов разнотравья увеличивается, а злаков уменьшается при увеличении глубины снежного покрова. Таким образом, внутривидовое * corresponding author варьирование признаков по естественным градиентам не обязательно согла- суется с изменчивостью межвидовой и варьированием на уровне сообществ. Manuscript received: 16.12.2019 Ключевые слова: функциональные признаки листа, альпийские растительные со- Review completed: 11.03.2020 об щества, удельная листовая поверхность, взвешенное среднее сообщества, Кавказ Accepted for publication: 06.04.2020 Published online: 09.06.2020 Functional leaf traits (FLT) are important parameters for content are the best predictors for quantitative identification plant fitness as well as many ecological functions of plants of plant strategies (Pierce et al. 2017). SLA is one of the including their role in carbon, nutrient and water cycling. best predictors to estimate relative growth rate (RGR) These traits include dry leaf mass, leaf (lamina) area, leaf (Poorter & Remkes 1990, Poorter & van der Werf 1998, thickness, leaf water contents and specific leaf area (SLA; Cornelissen et al. 1998, Shipley 2006; Metcalf et al. 2006, leaf area per mass unit; also used in its inversed form as leaf Rees et al. 2010) and it is very sensitive to ecological con- mass per area). Traits based on the leaf mass, area and water di tions, such as temperature, water availability, light re gime ©Botanical Garden-Institute FEB RAS. 2020 53 Onipchenko et al. and nutrient regime (Garnier et al. 2004, Suding & Goldstein fe rent communities coincides consistently with CWM va- 2008, Poorter et al. 2009, Scheepens et al. 2010, Ordonez et ria tion at the community level, the latter of which should al. 2010, Hodgson et al. 2011, Venn et al. 2011, Read et al. be largely dri ven by interspecific variation. In some cases 2014), as well as growing season length (Borgy et al. 2017). inter spe cific (based on CWM) and intraspecific trait varia- Most plant traits, including the mentioned leaf traits, tions coinside, but there some examples of opposite cases vary most strongly and consistently in their mean values (Lajoie & Vellend 2015). Within vs. across species trait cor- among species (Kattge et al. 2011), when compared to intra- re la tions may have oppo site signs (Anderegg et al. 2018) spe cific variation of the same traits. However, this does not and intraspecific FLT varia tions of different species were exclude the possibility that mean values for these traits are not coincided (Pakeman 2013). not strongly determined genetically and have low he ri ta bility, There are several types of intraspecific variation: variation even though low genetic variability can de crease the range of within individual (ontogenetic, seasonal etc.), within com- their variation (Donovan et al. 2011). Ge no ty pically driven mu nity (plot) variation and between communities variation variation is lower than envi ron ment-dri ven variation in SLA (Siefert et al. 2015). Only last one is reasonable to use for (Scheepens et al. 2010). En vi ron men tal factors govern the studding directions of intraspecific variation between com- traits significantly (Poorter et al. 2009), but other factors, such mu nities and we used only this level in our study. as ontogenetic stage and allo met ry, may also have pronounced Key factors for community’s structure and function can effects on leaf trait va ria bility (Cornelissen 1999, Niinemets be considered as (primary) abiotic and (secondary) bio tic 2004). Relative role of int ra specific variability is higher for (Belyea & Lancaster 1999). Abiotic factors (e.g. cli mate) species-poor com mu ni ties (Hulshof et al. 2013). Plant and select adapted species for a site, biotic factors (e.g. compe ti- leaf size as well as nut rient regime have meaningful effects on tion) form community structure. CWM of functional traits SLA (Milla et al. 2008, Rees et al. 2010, Akhmetzhanova et al. are parameters of community functional structure. So there 2012). As ment io ned above, while intraspecific variability of is an interesting question, which factors are more important plant traits can be remarkably high (Mitchell & Bakker 2014, for trait intraspecific variation – abiotic or community And ra de et al. 2014, Albert 2015, Carlucci et al. 2015, Siefert func tional structure per se. We can expect that for different et al. 2015, Siefert & Ritchie 2016), it is usually significantly functional traits different factors are more important. lower than inter specific for a given species set (Albert et al. In temperate alpine areas depth and duration of winter 2010, Jung et al. 2010, Auger & Shipley 2013, Dwyer et al. snow cover is one of the main local factors responsible for 2014, Messie r et al. 2017, but see Jung et al. 2014). Many plant community’s patterns (Kudo & Ito 1992, Onipchenko species may have similar mean SLA values, but differ in SLA 1994, Körner 2003, Choler 2005, Carlson et al. 2015). Diffe- responses to en vi ron mental variation (Dwyer et al. 2014). He rent plant communities change at short distances according et al. (2018) shown that there is a positive relationship bet- to “snowmelt” gradient. The communities have various func-
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-