Quantum Mechanics Made Simple: Lecture Notes

Quantum Mechanics Made Simple: Lecture Notes

Quantum Mechanics Made Simple: Lecture Notes Weng Cho CHEW 1 June 2, 2015 1The author is with U of Illinois, Urbana-Champaign. Contents Preface vii Acknowledgements vii 1 Introduction 1 1.1 Introduction . .1 1.2 Quantum Mechanics is Bizarre . .2 1.3 The Wave Nature of a Particle|Wave-Particle Duality . .2 2 Classical Mechanics and Some Mathematical Preliminaries 5 2.1 Introduction . .5 2.2 Lagrangian Formulation . .6 2.2.1 The Classical Harmonic Oscillator . .9 2.2.2 Continuum Mechanics of a String . .9 2.3 Hamiltonian Formulation . 11 2.4 More on Hamiltonian . 13 2.5 Poisson Bracket . 13 2.6 Some Useful Knowledge of Matrix Algebra . 14 2.6.1 Identity, Hermitian, Symmetric, Inverse and Unitary Matrices . 15 2.6.2 Determinant . 16 2.6.3 Eigenvectors and Eigenvalues . 17 2.6.4 Trace of a Matrix . 17 2.6.5 Function of a Matrix . 18 3 Quantum Mechanics|Some Preliminaries 21 3.1 Introduction . 21 3.2 Probabilistic Interpretation of the Wavefunction . 22 3.3 Time Evolution of the Hamiltonian Operator . 23 3.4 Simple Examples of Time Independent Schr¨odingerEquation . 26 3.4.1 Particle in a 1D Box . 26 3.4.2 Particle Scattering by a Barrier . 27 3.4.3 Particle in a Potential Well . 28 3.5 The Quantum Harmonic Oscillator{A Preview . 30 i ii Quantum Mechanics Made Simple 4 Time-Dependent Schr¨odingerEquation 33 4.1 Introduction . 33 4.2 Quantum States in the Time Domain . 33 4.3 Coherent State . 34 4.4 Measurement Hypothesis and Expectation Value . 35 4.4.1 Uncertainty Principle{A Simple Version . 38 4.4.2 Particle Current . 39 5 More Mathematical Preliminaries 41 5.1 A Function is a Vector . 41 5.2 Operators . 44 5.2.1 Matrix Representation of an Operator . 44 5.2.2 Bilinear Expansion of an Operator . 45 5.2.3 Trace of an Operator . 46 5.2.4 Unitary Operators . 47 5.2.5 Hermitian Operators . 48 5.3 *Identity Operator in a Continuum Space . 51 5.4 *Changing Between Representations . 54 5.4.1 Momentum Operator . 54 5.4.2 Position Operator . 55 5.4.3 The Coordinate Basis Function . 56 5.5 Commutation of Operators . 56 5.6 Expectation Value and Eigenvalue of Operators . 57 5.7 *Generalized Uncertainty Principle . 59 5.8 *Time Evolution of the Expectation Value of an Operator . 61 5.8.1 Comparison to classical equations of motion . 62 5.9 Periodic Boundary Condition . 64 6 Approximate Methods in Quantum Mechanics 67 6.1 Introduction . 67 6.2 Use of an Approximate Subspace . 67 6.3 *Time Independent Perturbation Theory . 69 6.3.1 First Order Perturbation . 72 6.3.2 Second Order Perturbation . 73 6.3.3 Higher Order Corrections . 73 6.4 Tight Binding Model . 74 6.4.1 Variational Method . 77 6.5 Time Dependent Perturbation Theory . 78 7 Quantum Mechanics in Crystals 81 7.1 Introduction . 81 7.2 Bloch-Floquet Waves . 82 7.2.1 Periodicity of E(k)............................. 85 7.2.2 Symmetry of E(k) with respect to k ................... 85 Contents iii 7.3 Bloch-Floquet Theorem for 3D . 86 7.4 Fermi-Dirac Distribution Function . 89 7.4.1 Semiconductor, Metal, and Insulator . 90 7.4.2 Why Do Electrons and Holes Conduct Electricity? . 91 7.5 Effective Mass Schr¨odingerEquation . 92 7.6 Heterojunctions and Quantum Wells . 93 7.7 Density of States (DOS) . 94 7.7.1 Fermi Level and Fermi Energy . 96 7.7.2 DOS in a Quantum Well . 96 7.7.3 Quantum Wires . 99 8 Angular Momentum 103 8.1 Introduction . 103 8.1.1 Electron Trapped in a Pill Box . 104 8.1.2 Electron Trapped in a Spherical Box . 106 8.2 Mathematics of Angular Momentum . 109 8.2.1 Transforming to Spherical Coordinates . 110 9 Spin 115 9.1 Introduction . 115 9.2 Spin Operators . 115 9.3 The Bloch Sphere . 118 9.4 Spinor . 118 9.5 Pauli Equation . 119 9.5.1 Splitting of Degenerate Energy Level . 121 9.6 Spintronics . 121 10 Identical Particles 127 10.1 Introduction . 127 10.2 Pauli Exclusion Principle . 128 10.3 Exchange Energy . 129 10.4 Extension to More Than Two Particles . 130 10.5 Counting the Number of Basis States . 132 10.6 Examples . 133 10.7 Thermal Distribution Functions . 134 11 Density Matrix 137 11.1 Pure and Mixed States . 137 11.2 Density Operator . 138 11.3 Time Evolution of the Matrix Element of an Operator . 141 11.4 Two-Level Quantum Systems . 142 11.4.1 Interaction of Light with Two-Level Systems . 143 iv Quantum Mechanics Made Simple 12 Quantization of Classical Fields 153 12.1 Introduction . 153 12.2 The Quantum Harmonic Oscillator Revisited . 154 12.2.1 Eigenfunction by the Ladder Approach . 156 12.3 Quantization of Waves on a Linear Atomic Chain{Phonons . 157 12.4 Schr¨odingerPicture versus Heisenberg Picture . 163 12.5 The Continuum Limit . 164 12.6 Quantization of Electromagnetic Field . 166 12.6.1 Hamiltonian . 168 12.6.2 Field Operators . 169 12.6.3 Multimode Case and Fock State . 171 12.6.4 One-Photon State . 171 12.6.5 Coherent State Revisited . 173 12.7 Thermal Light and Black-Body Radiation . 177 13 Schr¨odingerWave Fields 183 13.1 Introduction . 183 13.2 Fock Space for Fermions . 183 13.3 Field Operators . 185 13.4 Similarity Transform . 187 13.5 Additive One-Particle Operator . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    266 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us