Trig Cheat Sheet

Trig Cheat Sheet

Trig Cheat Sheet Definition of the Trig Functions Right triangle definition For this definition we assume that Unit circle definition p For this definition q is any angle. 0 <<q or 0°<q <°90 . 2 y ( xy, ) 1 hypotenuse y q opposite x x q adjacent opposite hypotenuse y 1 sinq = cscq = sinq ==y cscq = hypotenuse opposite 1 y adjacent hypotenuse x 1 cosq = secq = cosq ==x secq = hypotenuse adjacent 1 x opposite adjacent y x tanq = cotq = tanq = cotq = adjacent opposite x y Facts and Properties Domain The domain is all the values of q that Period can be plugged into the function. The period of a function is the number, T, such that f(qq+=Tf) ( ) . So, if w sinq , q can be any angle is a fixed number and q is any angle we cosq , q can be any angle have the following periods. æö1 tanq , qp¹ç÷nn+,=0,±±1,2,K èø2 2p sin (wq) ® T = cscq , qp¹nn,=0,±±1,2,K w æö1 2p secq , qp¹ç÷nn+,=0,±±1,2,K cos(wq) ® T = èø2 w p cotq , qp¹nn,=0,±±1,2,K tan (wq) ® T = w Range 2p csc(wq) ® T = The range is all possible values to get w out of the function. 2p sec(wq) ® T = -1££sin1q cscqq³1andcsc1£- w -1££cos1q secqq³1andsec1£- p cot (wq) ® T = -¥<tanq <¥ -¥<cotq <¥ w © 2005 Paul Dawkins Formulas and Identities Tangent and Cotangent Identities Half Angle Formulas (alternate form) sinqqcos qq1-cos1 tanqq==cot sin=±sin2 qq=-(1cos2( )) cosqqsin 222 Reciprocal Identities qq1+cos1 11cos=±cos2 qq=+(1cos2( )) cscqq==sin 222 sinqqcsc 11qq1-cos 2 1-cos2( q ) secqq==cos tan=±=tan q cosqqsec 21++cosqq1cos2( ) 11Sum and Difference Formulas cotqq==tan tanqqcot sin(a±b) =±sinacosbcosabsin Pythagorean Identities cos(a±=b) cosacosbmsinabsin sin22qq+=cos1 tanab±tan tan22qq+=1sec tan (ab±=) 1m tanabtan 1+=cot22qqcsc Product to Sum Formulas Even/Odd Formulas 1 sinasinb=ëûéùcos(a-b) -+cos(ab) sin(-q) =-sinqcsc(-qq) =-csc 2 1 cos(-q) =cosqsec(-=qq) sec cosacosb=éùcos(a-b) ++cos(ab) 2 ëû tan(-q) =-tanqcot(-qq) =-cot 1 sinacosb=ëûéùsin(a+b) +-sin (ab) Periodic Formulas 2 If n is an integer. 1 cosasinb=ëûéùsin(a+b) --sin (ab) sin(q+2pnn) =sinqcsc(q+=2pq) csc 2 Sum to Product Formulas cos(q+2pnn) =cosqsec(q+=2pq) sec æa+-böæöab tanq+pnn=tanqcotq+=pqcot sinab+=sin2sinç÷cosç÷ ( ) ( ) è22øèø Double Angle Formulas æa+-böæöab sinab-=sin2cosç÷sin ç÷ sin(2q) = 2sinqqcos è22øèø cos(2q) =-cos22qqsin æa+-böæöab cosab+=cos2cosç÷cosç÷ 2 22 =-2cos1q èøèø 2 æa+-böæöab =-12sin q cosab-cos=-2sinç÷sin ç÷ è22øèø 2tanq tan2( q ) = Cofunction Formulas 1-tan2q æppöæö Degrees to Radians Formulas sinç-q÷=cosqcosç÷-=qqsin 22 If x is an angle in degrees and t is an èøèø æppöæö angle in radians then cscç-q÷=secqsecç÷-=qqcsc pptxt180 è22øèø =Þtx==and æppöæö 180x180 p tanç-q÷=cotqcotç÷-=qqtan è22øèø © 2005 Paul Dawkins Unit Circle y (0,1) p æö13 æö13 ç÷, ç÷- , 2 èø22 èø22 p æö22 2p 90° ç÷, æö22 3 ç÷22 ç÷- , èø 22 3 p èø 120° 60° 3p æö31 4 ç÷, ç÷22 æö31 4 èø ç÷- , 135° 45° p èø22 5p 6 6 30° 150° (-1,0) p 180° 0° 0 (1,0) 360° 2p x 210° 7p 330° 11p 6 225° 6 æö31 æö31 ç÷--, 315° ç÷,- èø22 5p èø22 240° 7p 4 300° æö22 4p 270° ç÷--, 5p 4 æö22 èø22 3 3p ç÷,- 3 èø22 2 æö13 æö13 ç÷--, ç÷,- èø22 èø22 (0,1- ) For any ordered pair on the unit circle ( xy, ) : cosq = x and sinq = y Example æ5ppö1æö53 cosç÷=sin ç÷=- è3ø2èø32 © 2005 Paul Dawkins Inverse Trig Functions Definition Inverse Properties y==sin-1 x is equivalent to xysin cos(cos--11( xx)) ==cos(cos(qq)) -1 y==cosx is equivalent to xycos sin(sin--11()xx)==sin(sin ()qq) y==tan-1 x is equivalent to xytan tantan--11()xx==tan(tan ()qq) ( ) Domain and Range Function Domain Range Alternate Notation pp sin-1 xx= arcsin yx= sin-1 -11££x -££y 22 cos-1 xx= arccos -1 yx= cos -11££x 0 ££y p tan-1 xx= arctan pp yx= tan -1 -¥<x <¥ -<<y 22 Law of Sines, Cosines and Tangents c b a a g b Law of Sines Law of Tangents sinasinbgsin ab- tan 1 (ab- ) == = 2 abc 1 ab++tan 2 (ab) Law of Cosines 1 bc-tan 2 (bg-) 222 = a=b+-c2bc cosa 1 bc++tan 2 (bg) 222 b=a+-c2ac cos b 1 ac-tan 2 (ag-) 222 = c=a+-b2ab cosg 1 ac++tan 2 (ag) Mollweide’s Formula ab+ cos 1 (ab- ) = 2 1 c sin 2 g © 2005 Paul Dawkins .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us