Electron Energy Band - Fermi Level -Electrostatics of Device Charges

Electron Energy Band - Fermi Level -Electrostatics of Device Charges

EE143 S06 Semiconductor Tutorial 2 -Electron Energy Band - Fermi Level -Electrostatics of device charges Professor N Cheung, U.C. Berkeley 1 EE143 S06 Semiconductor Tutorial 2 The Simplified Electron Energy Band Diagram Professor N Cheung, U.C. Berkeley 2 EE143 S06 Semiconductor Tutorial 2 Energy Band Diagram with E-field Electron Electron Energy Energy E-field E-field - + +- EC 2 1 2 1 EC EV Electric potential EV Electric potential φ(2) < φ(1) φ(2) > φ(1) x x Electron concentration n n(2) eqφ(2) / kT = = eq[φ(2)−φ(1)]/ kT n(1) eqφ(1) / kT Professor N Cheung, U.C. Berkeley 3 EE143 S06 Semiconductor Tutorial 2 The Fermi-Dirac Distribution (Fermi Function) Probability of available states at energy E being occupied f(E) = 1/ [ 1+ exp (E- Ef) / kT] -5 where Ef is the Fermi energy and k = Boltzmann constant=8.617 ∗ 10 eV/K T=0K 0.5 f(E) E -Ef Professor N Cheung, U.C. Berkeley 4 EE143 S06 Semiconductor Tutorial 2 Properties of the Fermi-Dirac Distribution Probability of electron state at energy E will be occupied (1) f(E) ≅ exp [- (E- E ) / kT] for (E- E ) > 3kT Note: f f At 300K, •This approximation is called Boltzmann approximation kT= 0.026eV (2) Probability of available states at energy E NOT being occupied 1- f(E) = 1/ [ 1+ exp (Ef -E) / kT] Professor N Cheung, U.C. Berkeley 5 EE143 S06 Semiconductor Tutorial 2 How to find Ef when n(or p) is known Ec Ef (n-type) q|ΦF| Ei Ef (p-type) Ev n = ni exp [(Ef -Ei)/kT] Let qΦF ≡ Ef -Ei ∴n = ni exp [qΦF /kT] Professor N Cheung, U.C. Berkeley 6 EE143 S06 Semiconductor Tutorial 2 Dependence of Fermi Level with Doping Concentration Ei ≡ (EC+EV)/2 Middle of energy gap When Si is undoped, Ef = Ei ; also n =p = ni Professor N Cheung, U.C. Berkeley 7 EE143 S06 Semiconductor Tutorial 2 The Fermi Energy at thermal equilibrium At thermal equilibrium ( i.e., no external perturbation), The Fermi Energy must be constant for all positions Electron energy Material A Material B Material C Material D EF Position x Professor N Cheung, U.C. Berkeley 8 EE143 S06 Semiconductor Tutorial 2 Electron Transfer during contact formation System 1 System 2 System 1 System 2 Before e contact EF1 e EF2 formation EF2 EF1 System 1 System 2 System 1 System 2 - After Net + - Net + - contact positive + - negative + charge - formation charge + - + EF EF E E Professor N Cheung, U.C. Berkeley 9 EE143 S06 Semiconductor Tutorial 2 Applied Bias and Fermi Level Fermi level of the side which has a relatively higher electric potential will have a relatively lower electron energy ( Potential Energy = -q • electric potential.) Only difference of the E 's at both sides are important, not the absolute position of the Fermi levels. E E f2 f1 q| V | qVa a E E f1 f 2 Side 1 Side 2 Side 1 Side 2 +-+ - Va > 0 Va < 0 Potential difference across depletion region = Vbi -Va Professor N Cheung, U.C. Berkeley 10 EE143 S06 Semiconductor Tutorial 2 PN junctions Thermal Equilibrium E-field N - and p A + ND and n ρ(x) is 0 Depletion region ρ(x) is 0 -- ++ Quasi-neutral Quasi-neutral -- ++ region region p-Si n-Si + - ND only NA only ρ(x) is - ρ(x) is + Complete Depletion Approximation used for charges inside depletion region + - r(x) ≈ ND (x) – NA (x) http://jas.eng.buffalo.edu/education/pn/pnformation2/pnformation2.html Professor N Cheung, U.C. Berkeley 11 EE143 S06 Semiconductor Tutorial 2 Electrostatics of Device Charges 1) Summation of all charges = 0 ρ2 • xd2 = ρ1 • xd1 2) E-field =0 outside depletion regions n-type (x) p-type ρ Semiconductor Semiconductor ρ2 - xd1 x xd2 - ρ1 x=0 E = 0 E ≠0 E = 0 Professor N Cheung, U.C. Berkeley 12 EE143 S06 Semiconductor Tutorial 2 3) Relationship between E-field and charge density ρ(x) d [ε E(x)] /dx = ρ(x) “Gauss Law” 4) Relationship between E-field and potential φ E(x) = - dφ(x)/dx Professor N Cheung, U.C. Berkeley 13 EE143 S06 Semiconductor Tutorial 2 Example Analysis : n+/ p-Si junction ρ(x) +Q' Emax =qNaxd/εs p-Si n+ Si x E (x) d x 3) ⇒ Depletion region Slope = qNa/εs Depletion region -qNa is very thin and is approximated as x=0 xd 2) ⇒ E = 0 a thin sheet charge 4) Area under E-field curve 1) ⇒ Q’ = qNaxd ⇒ = voltage across depletion region 2 = qNaxd /2εs Professor N Cheung, U.C. Berkeley 14 EE143 S06 Semiconductor Tutorial 2 Superposition Principle ρ(x) If ρ1(x) ⇒ E1(x) and V1(x) +qND ρ2(x) ⇒ E2(x) and V2(x) -xp then x ρ (x) + ρ (x) ⇒ E (x) + E (x) and -qN- 1 2 1 2 A +xn V1(x) + V2(x) x=0 ρ (x) ρ1(x) 2 +qN Q=+qNAxp D -xp x + x +x -qNA n Q=-qNAxp x=0 x=0 Professor N Cheung, U.C. Berkeley 15 EE143 S06 Semiconductor Tutorial 2 ρ1(x) ρ2(x) +qND Q=+qNAxp -xp x x -qNA +xn Q=-qNAxp x=0 x=0 E (x) 1 E2(x) -xp +xn x + x - - Slope = Slope = -qNA/εs +qND/εs x=0 x=0 Professor N Cheung, U.C. Berkeley 16 EE143 S06 Semiconductor Tutorial 2 Sketch of E(x) E(x) = E1(x)+ E2(x) -x p +xn x=0 x Slope = + qND/εs Slope = - qNA/εs - Emax = -qNA xp /εs = -qND xn /εs Professor N Cheung, U.C. Berkeley 17 EE143 S06 Semiconductor Tutorial 2 Depletion Mode :Charge and Electric Field Distributions by Superposition Principle of Electrostatics ρ(x) ρ(x) ρ(x) Q' Q' Q' MetalOxide Semiconductor Metal Oxide Semiconductor Metal Semiconductor Oxide x=xo+x x=xo+x d x x d x −ρ - Q' −ρ x=0 x=xo x=0 x=xo x=0 x=xo E(x) E(x) E(x) MetalOxide Semiconductor MetalOxide Semiconductor MetalOxide Semiconductor = x x + x x=x x=x +x o+ x x=x + x o d d o d x=0 x=x x=0 x=x x=0 x=x o o o Professor N Cheung, U.C. Berkeley 18 EE143 S06 Semiconductor Tutorial 2 Why xdmax ~ constant beyond onset of strong inversion ? VG =VFB +VOX +VSi Approximation assumes Higher than VT Picks up all VSi does not change much the changes in VG Justification: If surface electron density changes by ∆n Ei Ef ∆n ∆VOX ∝ COX δ δ ∝ ln (∆ n ) but the change of VSi changes only by kT/q [ ln (∆n)] – small! δ ∆ n ∝ e kT Professor N Cheung, U.C. Berkeley 19 EE143 S06 Semiconductor Tutorial 2 N (surface) = n (bulk) • exp [ qVSi/kT] p-Si 16 Na=10 /cm3 VSi n-surface n-bulk = 2.1 • 104/cm3 0 2.10E+04 0.1 9.84E+05 n-surface Ei 0.2 4.61E+07 0.3 2.16E+09 qVSi 0.35eV 0.4 1.01E+11 0.5 4.73E+12 Ef 0.6 2.21E+14 0.7 1.04E+16 Onset of strong inversion 0.8 4.85E+17 0.9 2.27E+19 (at VT) Professor N Cheung, U.C. Berkeley 20.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us