
Development of Pb-MnO2 composite anodes for electrowinning application: Electrochemical and corrosion evaluations by MAYSAM MOHAMMADI M. Sc., Sharif University of Technology, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Materials Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2016 © Maysam Mohammadi, 2016 Abstract Electrowinning is the last step of the extraction of zinc in which aqueous zinc ions are electrodeposited to produce highly pure zinc metal. This process operates in highly acidic solutions and at high current densities. Conventional lead-based anodes used in the zinc electrowinning are associated with high corrosion rates and oxygen evolution overpotential in the electrowinning process. These result in some problems such as Pb contaminating the zinc cathode, shortened anode lifetime, and high energy consumption in the process. Lead-based composite anodes have been introduced to address these issues by using electroactive oxide particles dispersed in the Pb anode. Manganese ions, which typically exist in the zinc electrowinning electrolyte, can influence the anode performance, depending on their concentration and the anode material. The main aim of this work was to develop a new composite anode using MnO2 particles in a Pb matrix to improve the anode performance in the zinc electrowinning operating conditions in Mn-free and Mn-containing electrolytes. A combination of electrochemical and analytical methods was used to understand the oxidation, electrocatalytic activity, and corrosion performance of the Pb-MnO2 composite anodes compared to the conventional PbAg anode. Potentiometric titration was utilized to measure the oxidation rate of manganese ions. The anodic corrosion layers and the MnO2 deposited layers were characterized by Scanning Electron Microscopy and X-Ray Diffraction. A new electrochemical method was also developed for an on-site investigation of the deposited MnO2 layer on the anodes. The Pb-MnO2 composite anodes showed higher catalytic activity and better corrosion resistance than the PbAg anode under the zinc electrowinning operating conditions. The Pb– MnO2 anode can decrease the energy consumption in the electrowinning process in the Mn- ii free electrolyte by up to 5%. The composite particles were not effective in decreasing the anode potential in the Mn-containing electrolyte. The MnO2 particles catalyzed Mn(III) disproportionation, contributing to the deposition of a uniform, adherent, and protective MnO2 layer. Formation of this layer decreased the lead dissolution and manganese consumption rates. The Pb-MnO2 composite anode can be put into service without any pre-treatment since it quickly develops a stable MnO2 layer and generates very low MnO2 mud. iii Preface All of the work presented henceforth was conducted in the Electrochemistry and Corrosion Laboratory of the Materials Engineering department at the University of British Columbia under the supervision of Professor Akram Alfantazi. This research work has been granted by NSERC, Hydro-Quebec, and Xstrata Zinc. The journal and conference papers listed below have been prepared from work presented in the dissertation. I am the primary author of all the published work in which Professor Akram Alfantazi helped me extensively with. Dr. Farzad Mohammadi contributing to the first paper. Journal papers: 1. M. Mohammadi, F. Mohammadi, A. Alfantazi, Electrochemical Reactions on Metal- Matrix Composite Anodes for Metal Electrowinning, Journal of the Electrochemical Society, 160 (4), E35-E43 (2013). 2. M. Mohammadi, A. Alfantazi, Anodic Behaviour and Corrosion Resistance of the Pb- MnO2 Composite Anodes for Metal Electrowinning, Journal of the Electrochemical Society, 160 (6), C253-C261 (2013). 3. M. Mohammadi, A. Alfantazi, Performance of Pb-MnO2 and Pb-Ag Anodes in Mn- containing Sulphuric Acid Electrolyte Solutions, Hydrometallurgy, 153, 134–144 (2015). 4. M. Mohammadi, A. Alfantazi, Evaluation of manganese dioxide deposition on lead-based electrowinning anodes, Hydrometallurgy, 159, 28-39 (2016). Conference presentations with proceeding 1. M. Mohammadi, G. Houlachi, A. Alfantazi, The Role of Anode Chemical Composition th on the MnO2 Layer Formation in Zinc Electrowinning, Proceedings of the 7 International Symposium Hydrometallurgy 2014, Canadian Institute of Mining, Metallurgy and Petroleum (eds E. Asselin, D. Dixon, F. Doyle, D. Dreisinger, M. Jeffrey, M. Moats) 2, 163-172 (2014) ISBN: 978-1-926872-23-0. iv 2. M. Mohammadi, M. Mahon, A. Alfantazi, Electrodeposition of the MnO2 Layer on Lead- Based anodes in the Zinc Electrowinning Process, Proceedings of the Lead-Zinc Symposium 2015 (Pb-Zn 2015), GDMB Verlag, 2, 771-779, ISBN: 978-3-940276-65-0. Conference presentation: 1. M. Mohammadi, A. Alfantazi, Corrosion Investigation of Novel Pb-MnO2 Composite Anodes in Zinc Electrowinning Process, NACE Northern Area Western Conference 2013, Victoria, BC, Canada, 2013. v Table of contents Abstract ....................................................................................................................................... ii Preface ........................................................................................................................................ iv Table of contents ........................................................................................................................ vi List of tables ............................................................................................................................... ix List of figures .............................................................................................................................. x List of symbols ......................................................................................................................... xvi List of abbreviations ............................................................................................................... xvii Acknowledgements ............................................................................................................... xviii Dedication ................................................................................................................................. xix 1 Introduction .......................................................................................................................... 1 2 Literature review .................................................................................................................. 4 2.1 Introduction ................................................................................................................. 4 2.2 Zinc electrowinning process ....................................................................................... 6 2.3 Electrowinning anodes ................................................................................................ 8 2.3.1 Electrochemical reactions and corrosion of lead ............................................ 9 2.3.2 Lead-based alloys .......................................................................................... 12 2.3.3 Dimensionally-stable anode .......................................................................... 17 2.3.4 Composite anodes ......................................................................................... 19 2.4 Electrowinning electrolyte composition ................................................................... 26 2.4.1 Chloride ions ................................................................................................. 26 2.4.2 Manganese ions ............................................................................................. 27 3 Objectives ........................................................................................................................... 32 4 Experimental ...................................................................................................................... 35 4.1 Anode materials ........................................................................................................ 35 4.1.1 Lead-based alloys .......................................................................................... 35 4.1.2 Pb-MnO2 composite anodes .......................................................................... 36 4.2 Electrochemical measurements ................................................................................. 37 4.2.1 Cyclic voltammetry ....................................................................................... 40 4.2.2 Potentiodynamic polarization ........................................................................ 41 4.2.3 Galvanostatic and potentiostatic polarization ............................................... 41 4.2.4 Linear sweep voltammetry ............................................................................ 41 4.2.5 Electrochemical impedance spectroscopy ..................................................... 41 vi 4.3 Analytical measurements .......................................................................................... 42 4.3.1 Inductively coupled plasma and atomic adsorption spectroscopy ................ 42 4.3.2 Titration ......................................................................................................... 42 4.4 Characterizations ....................................................................................................... 44 4.4.1 Morphology
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages243 Page
-
File Size-