Spring 2016 Program Analysis and Verification Lecture 3: Axiomatic Semantics I Roman Manevich Ben-Gurion University Warm-up exercises 1. Define program state: 2. Define structural semantics configurations: 3. Define the form of structural semantics transitions: 2 Tentative syllabus Abstract Program Program Analysis Interpretation Verification Analysis Basics Techniques fundamentals Operational Control Flow Numerical Lattices semantics Graphs Domains Axiomatic Equation Fixed-Points Alias analysis Verification Systems Collecting Chaotic Interprocedural Semantics Iteration Analysis Galois Shape Using Soot Connections Analysis Domain CEGAR constructors Widening/ Narrowing 3 Agenda • Basic concepts of correctness • Axiomatic semantics (pages 175-183) – Motivation – First-order logic reminder – Hoare Logic 4 program correctness 5 Program correctness concepts • Specification = a certain relationship between initial state and final state Main focus of this course • Partial correctness = specifications that hold if the program terminates • Termination = program always terminates – i.e., for every input state partial correctness + termination = total correctness Other correctness concepts exist: liveness, resource usage, … 6 Verifying factorial with structural semantics 7 Structural semantics for While [asssos] x := a, 1 [x Aa] [skipsos] skip, 1 1 S1, 1 S1’, ’ [comp sos] S1; S2, 1 S1’; S2, 2 S1, 1 ’ [comp sos] S1; S2, 1 S2, ’ tt [if sos] if b then S1 else S2, 1 S1, if B b = tt ff [if sos] if b then S1 else S2, 1 S2, if B b = ff while b do S, 1 [whilesos] if b then S; while b do S) else skip, 8 Factorial example Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Factorial partial correctness specification = if the statement terminates then the final value of y will be the factorial of the initial value of x – What if x < 0? • Formally, using structural semantics: Sfac, 1* ’ implies ’ y = ( x)! 9 Factorial proof strategy Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) Lemma 1 Lemma 2 Lemma 3 • Lemma 1: if x>1 then y:=y*x; x:=x–1, 1* ’ implies y * ( x)! = ’ y * (’ x)! and ’ x1 • Lemma 2: if x1 then while (x=1) do (y:=y*x; x:=x–1), 1* ’ implies y * ( x)! = ’ y * (’ x)! and ’ x=1 • Lemma 3: if x1 then Sfac, 1* ’ implies ’ y = ( x)! 10 Factorial example: lemma 1 Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Lemma 1: if x>1 then y:=y*x; x:=x–1, 1 * ’ implies y * ( x)! = ’ y * (’ x)! and ’ x1 • Proof: Assume x>1 y:=y*x; x:=x–1, 1 x:=x–1, [y y* x] 1 [y y* x, xx–1] = ’ • Now ’ y * (’ x)! = ( y* x) * ( x–1)! = y * ( x)! And since’ x = x-1 we have that ’ x1 • QED 11 Factorial example: lemma 2 Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Lemma 2: if x1 then while (x1) do (y:=y*x; x:=x–1), 1* ’ implies y * ( x)! = ’ y * (’ x)! and ’ x=1 • Proof: W, 1 if (x1) then (y:=y*x; x:=x–1); W) else skip, – Case 1: x=1 – Case 2: x1 – meaning x>1 12 Factorial example: lemma 2, case 1 Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Lemma 2: if x1 then while (x1) do (y:=y*x; x:=x–1), 1* ’ implies y * ( x)! = ’ y * (’ x)! and ’ x=1 • Proof: W, 1 if (x1) then (y:=y*x; x:=x–1); W) else skip, 1 skip, 1 • Claim holds 13 Factorial example: lemma 2, case 2 Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Lemma 2: if x1 then while (x1) do (y:=y*x; x:=x–1), 1* ’ implies y * ( x)! = ’ y * (’ x)! and ’ x=1 • Proof: W, 1 if (x1) then (y:=y*x; x:=x–1); W) else skip, 1 (y:=y*x; x:=x–1); while, 1* while, ’’ 1* ’ • From lemma 1 we have that y * ( x)! = ’ y * (’’ x)! and ’’ x1 • Applying Lemma by induction (case 1 is the base case) gives us that ’’ y * (’’ x)! = ’ y * (’ x)! and ’ x=1 • Combining the two, we get ’ y * (’ x)! = ’’ y * (’’ x)! = y * ( x)! • and ’ x=1 • QED 14 Factorial example: lemma 3 Sfac y:=1; while (x1) do (y:=y*x; x:=x–1) • Lemma 3: if x1 then Sfac, 1* ’ implies ’ y = ( x)! • Proof: • Assume x1 • Now y:=1; W, 1 W, [y1] and [y1] x = x • Therefore, we can apply lemma 2 and obtain W, 1* ’ • [y1] y * ( [y1] x)! = ’ y * (’ x)! and ’ x=1 • Simplifying this yields: • 1 * ( x)! = ’ y * 1! and ’ x=1 • Meaning: ’ y = ( x)! • QED 15 How easy was that? • Proof is very laborious – Need to connect all transitions and argue about relationships between their states – Reason: too closely connected to semantics of programming language • Proof is long – Makes it hard to find possible mistakes • How did we know to find this proof? – Is there a methodology? 16 Can you I’ll use prove my operational program semantics correct? Better use axiomatic verification 17 One of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5 "P. Oxy. I 29" by Euclid - http://www.math.ubc.ca/~cass/Euclid/papyrus/tha.jpg. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:P._Oxy._I_29.jpg#/media/File:P._Oxy._I_29.jpg 18 A systematic approach to program verification 19 Axiomatic verification approach • What do we need in order to prove that the program does what it supposed to do? • A language to express specifications • Compare the behavior with the one obtained by the operational semantics • Develop a proof system for showing that the program satisfies the specification • Mechanically use the proof system to show correctness 20 Axiomatic semantics contributors Robert Floyd C.A.R. Hoare Edsger W. Dijkstra 1967: use assertions 1969: use Floyd’s ideas Predicate transformer as foundation for static to define axiomatic semantics: weakest correctness proofs semantics precondition and “An axiomatic basis for strongest postcondition computer programming” 21 Assertions, a.k.a Hoare triples { P } C { Q } statement precondition a.k.a command postcondition • P and Q are state predicates expressed as logical formulas – Example: x>0 • If P holds in the initial state, and if execution of C terminates on that state, then Q will hold in the state in which C halts • C is not required to always terminate {true} while true do skip {false} 22 Total correctness assertions [ P ] C [ Q ] • If P holds in the initial state, execution of C must terminate on that state, and Q will hold in the state in which C halts 23 Specifying correctness of factorial 24 Factorial example: specify precondition/postcondition { ? } y := 1; while (x=1) do (y := y*x; x := x–1) { ? } 25 First attempt We need a way to “remember” value of x before execution { x>0 } y := 1; while (x=1) do (y := y*x; x := x–1) { y=x! } Holds only for value of x at state after execution finishes 26 Fixed assertion A logical variable, must not appear in statements – immutable. Also called a ghost variable. { x=n } y := 1; while (x=1) do (y := y*x; x := x–1) { y=n! n>0 } 27 The proof outline Background axiom { x>0 x=n } { n!=n*(n-1)! } y := 1; { x>0 y*x!=n! nx } while (x=1) do { x-1>0 (y*x)*(x-1)!=n! n(x-1) } y := y*x; { x-1>0 y*(x-1)!=n! n(x-1) } x := x–1 { y*x!=n! n>0 x=1 } 28 Factorial spec and proof in Dafny online function Factorial(n: int): int requires n >= 1 { if n == 1 then 1 else n * Factorial(n - 1) } method ComputeFactorial(n: int) returns (y: int) requires n >= 1 ensures y == Factorial(n) { var x := n; y := 1; while x != 1 invariant y * Factorial(x) == Factorial(n) decreases x { y := y * x; x := x - 1; } } 29 Formalizing partial correctness via hoare logic 30 States and predicates • – program states (State) – undefined P • A state predicate P is a (possibly infinite) set of states • P – P holds in state 31 Formalizing Hoare triples ’ if C, 1*’ Q Ssos C = else P C(P) C ’ • { P } C { Q } – , ’ . ( P C, 1* ’) ’ Q alternatively – Convention: P for all P . P SsosC Q 32 How do we express predicates? • Extensional approach – Abstract mathematical functions P : State {tt, ff} • Intensional approach – via language of formulae 33 An assertion language • Bexp is not expressive enough to express predicates needed for many proofs – Extend Bexp • Allow quantification – z. … – z. … • z. z = kn • Import well-known mathematical concepts – n! n (n-1) 2 1 34 An assertion language Either a program variables or a logical variable a ::= n | x | a1 + a2 | a1 a2 | a1 – a2 A ::= true | false | a1 = a2 | a1 a2 | A | A1 A2 | A1 A2 | A1 A2 | z. A | z. A 35 Some FO logic definitions before we get to the rules 36 Free/bound variables • A variable is said to be bound in a formula when it occurs in the scope of a quantifier Otherwise it is said to be free – i. k=im – (i+10077)i. j+1=i+3) • FV(A) the free variables of A • Defined inductively on the abstract syntax tree of A 37 Computing free variables FV(n) {} FV(x) {x} FV(a1+a2) FV(a1a2) FV(a1-a2) FV(a1) FV(a2) FV(true) FV(false) {} FV(a1=a2) FV(a1a2) FV(a1) FV(a2) FV(A) FV(A) FV(A1 A2) FV(A1 A2) FV(A1 A2) FV(a1) FV(a2) FV(z.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-