Recent Developments in Rhodium Carbene and Nitrene Chemistry

Recent Developments in Rhodium Carbene and Nitrene Chemistry

Recent Developments in Rhodium Carbene and Nitrene Chemistry R1 C H N2 1 LnM R H R2 N2 C R1 R2 2 Metal carbenoid R C-H functionalization LnM LnM "Traditional' C-H activation H C X C H H X C MLn MacMillan Group Meeting February 3, 2010 Brian Ngo Laforteza Rhodium Carbene and Nitrene Chemistry Catalysts ■ Rhodium(II) acetate – prototypical structure of dirhodium carbene/nitrene catalysts Me O O Me O O Rh Rh O O Me O O open coordination site Me Rh2(OAc)4 . “Paddle wheel” catalyst ■ Only one rhodium center functions as carbene binding site . Second acts as electron sink to increase electrophilicity of carbene moiety – additional stabilization R N2 . Catalyst binds carbene through strong σ-acceptor R R M M interactions and weak π-back-donation R N2 Rhodium Carbene and Nitrene Chemistry Catalysts ■ Two widely utilized classes of catalysts R . Symmetry may vary depending X Y R on orientation of ligand binding X Y Rh Rh Y X R Y X Rhodium(II) carboxylates R Rhodium(II) carboxamidates O Rh O Rh X N Rh N O Rh SO2Ar R 4 4 X = O, NCOR . Very active at decomposing diazo compounds . Generally much more rigid than rhodium carboxylates . Optimal for intermolecular C–H insertion reactions . Optimal for enantioselective intramolecular C–H insertion . Later generations possess rigid bridged structure Rhodium Carbene Chemistry The Metal Carbene ■ Control carbene reactivity through substituents - “acceptors” and “donors” Acceptor Acceptor/Acceptor Acceptor/Donor O O O O H Y X X Y X N2 N2 N2 X = R, OR, NR2 X, Y = R, OR, NR2 X = R, OR, NR2 Y = vinyl, aryl . Acceptor/acceptor and acceptor/donor groups stabilize diazo compound – more active catalyst needed for decomposition . Carbenoids formed from acceptor/acceptor diazo compounds very electrophilic . Donor substituent stabilizes carbenoid through resonance Rhodium Carbene Chemistry Trends in C–H Activation ■ Generally believed to occur through concerted (though asynchronous), three-centered transition state A A A H R B C H + B H Rh2L4 D B R + Rh2L4 R C Rh2L4 D R D R R . Build-up of positive charge at carbon undergoing C-H cleavage . C–H activation occurs preferentially at sites that can stabilize δ+ α-hetero C–H, allylic C–H, benzylic C–H preferred sites of activation Reactivity of C–H bonds undergoing insertion methine > methyelene >> methyl . Steric factors, however, can sometimes override this selectivity Rhodium Carbene Chemistry Rh2(DOSP)4 ■ Rhodium(II) carboxylate developed and heavily utilized by Huw M. L. Davies (Emory) SO2Ar H H N O O N Rh O O SO2Ar O Rh O SO2Ar O O N N H H SO2Ar Ar = p-(C12H25)C6H4 ■ Stereochemical model L L H M S S M L MeO2C R L MeO2C R MeO2C R S M S M Rh H Rh . Esther considered sterically demanding group Davies et al. Chem. Rev. 2003, 103, 2861. Davies et al. J. Org. Chem. 2009, 74, 6555. Combined C–H Insertion/Cope Rearrangement Synthesis of 4-Substituted Indoles ■ C–H insertion into 4-methyl-1,2-dihydronaphthalene proceeded with high diastereoselectivity Me Me Ph 95% yield Rh (S-DOSP) (0.5 mol%) Ph N 2 4 + 2 >98% de 2,2-dimethylbutane, 0 °C CO2Me H >99% ee CO2Me . Selectivity unusually high compared to what is known for C–H insertion into cycloalkenes . Mechanism more complex than appears? ■ Proposed combined C–H activation/Cope rearrangement, followed by retro-Cope rearrangement Rh Ph Ph Ph Me CO2Me Me CO2Me Me CO2Me H C-H/Cope Cope H H . Fully conjugated product favored Davies et al. J. Am. Chem. Soc. 2004, 126, 10862. Combined C–H Insertion/Cope Rearrangement Retro-Cope ■ Mechanistic analysis Me Et Me Rh2(S-DOSP)4 (2 mol%) Et N + 2 // 2,2-dimethylbutane, 23 °C CO2Me H CO2Me Et CO Me C-H/Cope 2 110 °C Me >98% de 92%, 98% ee 98% ee ■ Preliminary scope R2 X = CH2, O R1 = H, m-/p-OMe R1 2 X R = OAc, OSiR3 Davies et al. J. Am. Chem. Soc. 2004, 126, 10862. Combined C–H Insertion/Cope Rearrangement Synthesis of 4-Substituted Indoles ■ C–H insertion into dihydroindoles followed by Cope rearrangement and aromatization OAc R CO2Me N2 Rh2(S-DOSP)4 + R CO2Me N DMB, rt Boc N Boc OAc R R R AcO Cope N H Boc N Boc CO2Me Davies et al. J. Am. Chem. Soc. 2006, 128, 1060. Combined C–H Insertion/Cope Rearrangement Synthesis of 4-Substituted Indoles ■ C–H insertion into dihydroindoles followed by Cope rearrangement and aromatization OAc R CO2Me N2 Rh2(S-DOSP)4 + R CO2Me N DMB, rt Boc N Boc Cl MeO Br Cl 65%, 98% ee 52%, 98% ee 53%, 99% ee 45%, 98% ee H3C N Boc 56%, 98% ee 64%, 98% ee 65%, 99% ee 61%, 99% ee Davies et al. J. Am. Chem. Soc. 2006, 128, 1060. Combined C–H Insertion/Cope Rearrangement Application Towards Natural Product Synthesis ■ (+)-erogorgiaene: kinetic enantiodifferentiation Me Me Me (±) H 2 mol% Me Me 2 mol% Me H H Rh (R-DOSP) 2 4 + Rh2(R-DOSP)4 MeO2C Me N Me 2 MeO2C Me Me 48% 48%, 90% ee Me Me H Me Me Me (+)-erogorgiaene Davies et al. Angew. Chem. Int. Ed. 2005, 44, 1733. Combined C–H Insertion/Cope Rearrangement Application Towards Natural Product Synthesis ■ Similar enantiodifferentiating step used in analogous syntheses O Me O Me O Me OH Me HO HO HO HO Me Me Me O H Me H H H O O Me O Me Me H Me Me H Me Me Me Me Me OH (–)-colombiasin A (–)-elisapterosin B (+)-elisabethadione (+)-p-benzoquinone Davies et al. J. Am. Chem. Soc. 2006, 128, 2485. Davies et al. Tetrahedron 2006, 62, 10477. Tandem Cyclopropanation/Cope Rearrangement Formal [4+3] Cycloadditions ■ General idea R3 MeO C R3 2 R4 4 4 N2 MeO2C R MeO2C R R5 Rh(II) 2 5 Cope R2 + R R 2 5 R3 R R 7 6 R1 R R R1 R7 R6 1 R7 R R6 ■ Stereochemical model for cyclopropanation: based on “end-on” approach of olefin H R1 H H R1 2 1 MeO2C R 2 R MeO2C R H H R2 H H Rh Rh MeO2C Davies et al. J. Am. Chem. Soc. 2003, 125, 15902. Tandem Cyclopropanation/Cope Rearrangement Formal [4+3] Cycloadditions ■ Scope of dienes R4 CO Me CO2Me 2 4 R N 1 mol% Rh2(S-PTAD)4 + 2 R2 OTBS R3 OTBS R3 hexanes, –26 °C R1 R1 R2 CO2Me CO2Me TBSO CO2Me OTBS OTBS OTBS Me Ph Me 80% yield 82% yield 70% yield O N O Rh 87% ee 95% ee 99% ee O H O Rh TBSO CO2Me CO2Me 4 CO2Me Rh (S-PTAD) OTBS OTBS 2 4 OTBS Me MeO Me 63% yield 86% yield 57% yield 95% ee 92% ee Davies et al. J. Am. Chem. Soc. 2009, 131, 8329. Tandem Cyclopropanation/Cope Rearrangement Formal [4+3] Cycloadditions ■ Total synthesis of (–)-5-epi-vibsanin E R4 CO Me CO2Me 2 4 R N 1 mol% Rh2(S-PTAD)4 + 2 R2 OTBS R3 OTBS R3 hexanes, –26 °C R1 R1 R2 CO2Me OTBS 65% yield Me Me CO2Me 0.5 mol% Me + N2 90% ee Me OTBS Rh (S-PTAD) 2 4 Me Me O Me O Me O Me Me O Me Me (–)-5-epi-vibsanin E Davies et al. J. Am. Chem. Soc. 2009, 131, 8329. Nucleophilic Attack on Rhodium Carbenes Formal [3+2] Annulation of Indoles ■ Two isomers of annulated product initially observed CO2Me Ph H H N2 Rh2(R-DOSP)4 + + N MeO2C Ph CH2Cl2, –45 °C Ph CO2Me Me N H N H Me Me exo endo 72% yield 17% 80% ee >99% ee ■ Competition between C2- and C3-nucleophilic attack? N2 N2 CO2Me Ph MeO2C Ph Me MeO2C Ph H Me Rh2(S-DOSP)4 Rh2(S-DOSP)4 Me N toluene, –45 °C Ph N toluene, –45 °C CO2Me Me N Me Me N H Me Me exo endo 68% yield 74% yield 97% ee 99% ee Davies et al. J. Am. Chem. Soc. 2010, 132, 440. Nucleophilic Attack on Rhodium Carbenes Formal [3+2] Annulation of Indoles ■ Proposed mechanism MeO2C Ph CO Me CO2Me 2 Rh L 2 4 L4Rh2 H Ph Ph N H N N Me Me Me . Zwitterionic intermediate ■ Stereochemical rationale: configuration of carbene and olefin govern diastereoselectivity NMe MeN Ph Me Me MeO2C Ph exo MeO2C endo Rh Rh s-cis s-trans Davies et al. J. Am. Chem. Soc. 2010, 132, 440. Nucleophilic Attack on Rhodium Carbenes Imines As Nucleophiles ■ Bicyclic pyrrolidines are formed when excess diazo compound is used Ph NO2 N Ar CO2Me N 2 1 mol% Rh2(OAc)4 N 47-66% yield + MeO C Ph up to 98:2 dr 2 CH2Cl2, reflux R NO2 R = H, Cl, Me, OMe ■ Proposed mechanism Ph CO2Me CO2Me Ph CO2Me Rh2L4 Ar N Ar N R N Ar Ph R R Doyle et al. J. Am. Chem. Soc. 2003, 125, 4692. Nucleophilic Attack on Rhodium Carbenes Imines As Nucleophiles ■ Bicyclic pyrrolidines are formed when excess diazo compound is used Y Ph H CO2Me N X N 2 1 mol% Rh2(OAc)4 up to 84% yield + N MeO C Ph Ph ~ 1:1 dr 2 CH2Cl2, reflux CO2Me X 2 eq Y X = H, Cl, Me, NO2 Y = H, OMe, NO2 ■ Proposed mechanism Ar2 Ar2 2 CO Me E Ph Ar Ph CO2Me 2 N Ph N N CHO2Me Ar1 Rh2L4 1 Ar CO2Me Ar1 Ph H Ph Rh2L4 CO2Me Ph Doyle et al.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us