Discrete Parametric Surfaces

Discrete Parametric Surfaces

Discrete Parametric Surfaces Johannes Wallner Short Course on Discrete Differential Geometry San Diego, Joint Mathematical Meetings 2018 Overview 1/60 Introduction and Notation An integrable 3-system: circular surfaces An integrable 2-system: K-surfaces Computing minimal surfaces Freeform architecture Part I Introduction and Notation Parametric Surfaces 2/60 k k k l Surfaces x(u) where u 2 Z or u 2 R or u 2 Z × R continuous case, discrete case, mixed case Parametric Surfaces 2/60 k k k l Surfaces x(u) where u 2 Z or u 2 R or u 2 Z × R continuous case, discrete case, mixed case Transformations of (k − 1)-dimensional (1)(1)(1)(1) xxxx ((((uuuu1111;;;; u u u u2222)))) surfaces yield (1)(1)(1)(1) xxxx ((((iiii1111;;;; i i i i2222)))) k-dim. surfaces xxxx((((iiii1111;;;; i i i i2222)))) xxxx((((uuuu1111;;;; u u u u2222)))) Examples of discrete surfaces 3/60 quad meshes in freeform architecture [Yas[Yas[Yas[Yas Marina Marina Marina Marina Hotel, Hotel, Hotel, Hotel, Abu Abu Abu Abu Dhabi] Dhabi] Dhabi] Dhabi] [Hippo house, Berlin zoo] Examples of discrete surfaces 4/60 various mappings k Z ! fpointsg or k Z ! fspheresg or . Discrete minimal surfaces, discrete cmc surfaces, discrete K-surfaces, etc. [images: Tim Hoffmann] Notation 5/60 discrete parametric surface ∼= net Right shift of a surface x in the k-th direction is denoted by xk Left shift of a surface x in the k-th direction is denoted xk¯ 8 x12¯ x2 x12 <>x1(k; l) = x(k + 1; l) x1¯ x x1 :>x2(k; l) = x(k; l + 1) x1¯2¯ x2¯ x12¯ Differences are used instead of derivatives ∆i x = xi − x Surface classes: conjugate surfaces 6/60 a smooth conjugate surface x(u) has “planar” infinitesimal quads 4 3 vol c.h. x(u); x(u1+"; u2); x(u1; u2+"); x(u1+"; u2+") =" 1 = det(x(u +"; u ) − x(u); x(u ; u +") − x(u); x(u +"; u +") − x(u)) 1 2 1 2 1 2 2"4 2 4 ≈ det("@1x; "@2x; "@1x + "@2x + 2" @12x)=2" = det(@1x; @2;@12x) = 0 Surface classes: conjugate surfaces 7/60 a discrete conjugate surface x(u) has planar elementary quads det(∆kx; ∆l x; ∆kl x) = 0 () xl xkl is co-planar for all l; k () (generically) x xk lk kl lk kl there are coefficient functions c , c s.t. ∆k∆l x = c ∆kx + c ∆l x: Surface classes: asymptotic surfaces8/60 Parameter lines are asymptotic, i.e., in every point they indicate the intersection of the saddle-shaped surface with its own tangent plane smooth case: @11x; @22x 2 spanf@1x; @2g: discrete case: x2 x; x1; x1¯; x2; x2¯ 2 plane P (u) x1¯ x x1 x2¯ Surface classes: principal surfaces 9/60 smooth case: parameter lines are conjugate + orthogonal xl xkl discrete case: is circular for all l; k x xk Why is circularity “principal”? 10/60 smooth case: principal curves are characterized by developabililty of the surface formed by normals discrete case: normals are circles’ axes. Observe developability (convergence can be proved) Monographs 11/60 [R. Sauer: Differenzengeometrie, Springer 1970] [A. Bobenko, Yu. Suris: Discrete Differential Geometry, AMS 2009] Part II 3-systems Conjugacy as a 3-system 12/60 Generically, a conjugate net x(u1; u2; u3) is uniquely determined by arbitrary initial values x(0; u2; u3) and x(u1; 0; u3) and x(u1; u2; 0). Proof is trivial (intersect planes) x23 x23 x123 x3 x13 =) x3 x13 x2 x12 x2 x12 x x1 x x1 Circularity as a 3-system 13/60 Generically, a circular net x(u1; u2; u3) is uniquely determined by arbitrary initial values x(0; u2; u3) and x(u1; 0; u3) and x(u1; u2; 0). Proof is not trivial (Miquel’s theorem) x123 xxxx2222 # xxx 2222 xxxx23232323 xxxx13131313 23232323 xxxx3333 x = 1 x13 x1 x123 xxx x xxxx23232323 12 x12 xx xxxx2222 xxxx12121212 222 xxxx111 x xxx xxx1111 23 x2 xxxx123123123123 x3 x xxxx1111 xxxx3333 1111 xxx xxxx xxxx13131313 Reduction of 3-systems 14/60 conjugate nets live in projective geometry circular nets live in Mobius¨ geometry Oval quadric (sphere) in projective space is a model Mobius¨ ge- ometry — planar sections are circle, projective automorphisms of quadric are Mobius¨ transforms conjugate net in the quadric is a circular net Propagation of Circularity 15/60 Consider a conjugate net x(u1; : : : ; un) (n ≥ 3). In the generic case circularity is implied by circular initial values (i.e., quads containing vertices with u1u2 ··· un = 0 are circular). x123 Proof: Consider a 3-cell with diagonal x—x123 # xxxx xxxx13131313 xxxx23232323 xxxx3333 1313 where the quads incident to x are circular. xx3333 x Miquel =) x exists is intersection of 12 123 xxxx2222 xxxx1111 circles. Conjugacy =) x123 is already determined as intersection of planes. xxxx 4-consistency of 3-systems 16/60 Can we construct a conjugate net x(u1; u2; u3; u4) from conjugate initial values? (quads having a vertex with u1u2u3u4 = 0 are planar) x¨ ::: ¨1234@ :::::: x ¨ ::::::: Make 3-cubes incident with ¨¨ @ :::: ¨ @ :::: ¨ @ ::::: x :::: x¨ :::: x¨: 134@ ::::: ¨ 234 ::::: ¨ 124@ x x @ :::¨:::: ::::::: ¨ conjugate: These are — 123, ¨ :::: ¨:¨::: @ @ ¨ :::: ¨ :::: @ @¨¨ :::::¨ ::::@: ::: : ¨: x34 :::: x14@ ¨x¨24 ::::: @ ¨ x—x124, x—x134, and x—x234. :::: ¨ :::::: @ ¨ ::::::: ¨ ¨ ::: @:¨ ¨x123@ ::::: x4 ¨ ::::: Now there are four competing ¨ @ ::::::: ¨¨ @ :::: ¨ @ ::::: x ::: x¨ ::: x¨: 13@ ::::: ¨ 23 ::::: ¨ 12@ @ ::::¨: ::::: ¨ ways to find x1234: one for each ¨ ::::::: ::::¨::: @ @ ¨ :::: ¨¨ :::: @ @¨¨ :::::¨ ::::@: ::: : ¨: x3 :::: x@1 ¨x2 ::::: @ ¨¨ 3-cube incident with x1234. :::: ¨ ::::: @ ¨ :::::: ¨ :@:x:¨ 4-consistency of 3-systems 17/60 Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system. Proof in dimensions ≥ 4: Within cube x1—x1234, we have x1234 2 span(x12x123x124) \ span(x13x132x134) \ span(x14x142x143): x¨ :::: ¨1234@ :::::: ¨ :::::: ¨ @ ::::::: Similar expressions for other cubes ¨¨ @ :::::: x ::::: x¨ ::::: x¨: 134@ ::::::::¨234 :::::::: ¨ 124@ @ ¨¨:::::: ::::¨:: ¨ :::::: ¨ ::::::@ each quad is intersection of two cubes @¨:: :::::¨¨ ::@::: x34 :::::: x14 ¨x¨24 :::::: @ ¨ :::::::: @ ¨ 64 :::::: ¨ T x¨ :::: @x::¨ =) x 2 (span(:::)) ¨ 123@ :::::: 4 1234 i=1 ¨ :::::: ¨ @ ::::::: ¨¨ @ ::::: x :::: x¨ :::: x¨:: 13@ ::::::: ¨ 23 ::::::: ¨ 12@ that expression no longer depends :¨:::::: ::::::¨: @ ¨¨ :::::: ¨ :::::: @ @¨ ::::::¨¨ :::@::: x3::::::: x1 ¨x2 :::::: @ ¨¨ :::::: @ ¨ on choice of initial 3-cube, q.e.d. ::::::: ¨ :@:x::¨ 4-consistency of 3-systems 18/60 Lemma. Consider coefficient functions clk, ckl in a conjugate 3- net lk kl defined by ∆k∆l x = c ∆kx + c ∆l x. There is a birational mapping 12 21 23 32 31 13 φ 12 21 23 32 31 13 (c ; c ; c ; c ; c ; c ) 7−! (c3 ; c3 ; c1 ; c1 ; c2 ; c2 ) x23 x23 x123 12 31 c3 ; c3 x3 x13 x3 x13 =) 32 23; c1 c13; c31 c1 x12 x12 x x1 x x1 4-consistency of 3-systems 19/60 Proof. Use the “product rule” ∆j (a · b) = aj · ∆j b + ∆j a · b to expand kj jk kj kj ∆i ∆j ∆kx = ∆i (c ∆j x + c ∆kx) = ci ∆i ∆j x + ∆i c ∆j x + ··· kj ji jk ki kj ij kj jk ik jk = (ci c + ci c )∆i x + (ci c + ∆i c )∆j x + (ci c + ∆i c )∆kx: ik kj ki ij ik jk ik ki ji ki ∆j ∆k∆i x = (cj c + cj c )∆j x + (cj c + ∆j c )∆kx + (cj c + ∆j c )∆i x: ji ik ij jk ji ki ji ij kj ij ∆k∆i ∆j x = (ck c + ck c )∆kx + (ck c + ∆kc )∆i x + (ck c + ∆kc )∆j x: 12 32 Permutation invariance of ∆i ∆j ∆k yields linear system for var. (c3 ; : : : ; c1 ), jk ij jk ji ik jk ik namely equations ∆i c = ck c + ck c − ci c (i 6= j 6= k 6= i) valid in the generic case. Matrix inversion =) desired birational mapping. 4-consistency of 3-systems 20/60 Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system. Proof. general position and dimension d ≥ 4: see above. Alternative: computation x1234 by the birational mapping ik ki kl lk li il φ ik ki kl lk li il (c ; c ; c ; c ; c ; c ) 7−! (cl ; cl ; ci ; ci ; ck ; ck ) lk kl x¨ ::::: ¨1234@ :::::::: which applies to ∆k∆l x = c ∆kx + c ∆l x. ¨ ::::::::: ¨¨ @@ ::::::: x ::::::: x¨ ::::::: x¨: 134@ ::::::¨:::234 ::::::::: ¨ 124@ @ ¨¨ :::::: ¨:::::: @¨ :::::: ¨¨ ::::@:@: Different computations yield the same x ::::: x:: x¨:: 34 ::::::: 14@ ¨ 24 :::::::::: @ ¨ :::::@::¨¨ x¨ ::::::: x: result in case d ≥ 4 =) identity of ¨ 123@ :::::::::: 4 ¨¨ @ ::::::: ¨::: @ ::: :::::: x13 ::::::: ¨x¨23 ::::::: x¨12 @@ ¨::::::: ::::::¨: ¨ @ ¨ ::::::: ¨ ::::::: @ rational functions =) same result in @¨::: ::::::¨ :::@::: x3 ::::::: x1 ¨¨x2 :::::::: @@ ¨ ::::::::: ¨ all cases. @:x::¨ N-consistency of 3-systems 21/60 Thm. Circularity is an integrable (i.e., 4-consistent) 3-system. Proof. Circularity propagates through a conjugate net. Thm. 4-consistency implies N-consistency for N ≥ 4. Proof. (N = 5) Suppose 4-cubes x—x1234, x—x1235, : : : x—x2345. x¨ ::::: ¨1234@ :::::::: are conjugate =) each 4-cube ¨ ::::::::: ¨¨ @@ ::::::: x ::::::: x¨ ::::::: x¨: 134@ ::::::¨:::234 ::::::::: ¨ 124@ @ ¨¨ :::::: ¨:::::: @¨ :::::: ¨¨ ::::@:@: incident with x12345 is conjugate, with x ::::: x:: x¨:: 34 ::::::: 14@ ¨ 24 :::::::::: @ ¨ :::::@::¨¨ x¨ ::::::: x: a possible conflict regarding x12345. ¨ 123@ :::::::::: 4 ¨¨ @ ::::::: ¨::: @ ::: :::::: x13 ::::::: ¨x¨23 ::::::: x¨12 @@ ¨::::::: ::::::¨: ¨ @ ¨ ::::::: ¨ ::::::: @ There is no conflict because any @¨::: ::::::¨ :::@::: x3 ::::::: x1 ¨¨x2 :::::::: @@ ¨ ::::::::: ¨ two 4-cubes share a 3-cube. @:x::¨ 3-systems: Summary 22/60 Discrete conjugate surfaces resp. circular surfaces are discrete versions of smooth conjugate surfaces resp. principal surfaces. Conjugacy is a 3-system in d-dimensional projective space (d ≥ 3), and circularity is a 3-system in d-dimensional Mobius¨ geometry (d ≥ 2). Both 3-systems are 4-consistent, i.e., integrable. 4-consistency implies N-consistency for all N ≥ 4. Part III 2-Systems K-surfaces 22/60 For a smooth surface x(u1; u2) which is asymptotic, i.e., @11x; @22x 2 spanf@1x; @2g; K = const is characterized by the Chebyshev condition @2k@1xk = @1k@2xk = 0 discrete n-dim. case: x; xk; xk¯; xl ; x¯l 2 plane P (u) ∆l k∆kxk = ∆kk∆l xk = 0 K-surfaces 23/60 unit normal vector n(u), rotation angle cos αk = hn; nki ∆l k∆kxk = 0 (l 6= k) ∆l hn; nki = 0 (l 6= k) x(u1; u2) is uniquely determined by initial values x(0; u2) and x(u1; 0) (2-system property) =) flexible mechanism made of flat twisted members [Wunderlich[Wunderlich[Wunderlich[Wunderlich 1951] 1951] 1951] 1951] Multidim.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    67 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us