The Pennsylvania State University The Graduate School Department of Geosciences LATE ORDOVICIAN OCEAN-CLIMATE SYSTEM AND PALEOBIOGEOGRAPHY A Thesis in Geosciences by Achim D. Herrmann 2004 Achim D. Herrmann Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2004 The thesis of Achim D. Herrmann was reviewed and approved* by the following: Mark E. Patzkowsky Associate Professor of Geosciences Thesis Advisor Chair of Committee Rudy L. Slingerland Professor of Geosciences Michael A. Arthur Professor of Geosciences Raymond Najjar Associate Professor of Meteorology David Pollard Senior Research Associate Peter Deines Professor of Geochemistry Associate Head for Graduate Programs and Research *Signatures are on file in the Graduate School iii ABSTRACT The Ordovician was a time of extensive diversification and radiation of marine life. The end of the Ordovician is marked by a major mass extinction that is generally attributed to environmental perturbations associated with an extensive yet short-lived glaciation. The understanding of the climate dynamics during this crucial time period for the evolution of life is still fragmental. I used an atmospheric general circulation model (AGCM) and an ocean general circulation model (OGCM) to study the climate system in the Caradoc (~454 Ma) and the Ashgill (~545 Ma). Specifically, I investigated the response to changes in paleogeography, atmospheric pCO2, solar insolation cycles (obliquity), poleward ocean heat transport, and sea level. I also used a 3-dimensional ice sheet model to explore the necessary boundary conditions for ice sheet formation. The AGCM results indicate that, assuming that pCO2 did not fall below 8x PAL (a minimum value for this time period), a drop in pCO2 and the paleogeographic evolution can only be regarded as preconditioning factors in the glaciation. In order for ice sheets to form, other factors must have changed such as a drop in sea level from its generally high Late Ordovician levels and/or a reduction in poleward ocean heat transport. In all OGCM simulations, a drop in sea level led to a reduction in poleward ocean heat transport. This indicates a possible positive feedback that could have led to enhanced global cooling in response to pre-glaciation sea level drop. Continental drift could explain the observed global cooling trend in the Late Ordovician through a combined reduction in poleward ocean heat transport and increased ice-albedo effect. The ocean-climate system was also dominated by strong latitudinal temperature gradients and vigorous horizontal and vertical ocean circulation. Finally, I compared the paleobiogeography of different taxonomic groups to the results of the climate models. The spatial distribution of Caradocian marine organisms is consistent with climatic and oceanographic gradients inferred from coupled ocean- climate models. The paleobiogeographic data thus provide an important evaluation of the global ocean-climate models and lead to a more robust inference of the early Late Ordovician global ecosystem. iv TABLE OF CONTENTS LIST OF FIGURES..................................................................................................vii LIST OF TABLES ...................................................................................................xi ACKNOWLEDGEMENTS......................................................................................xii Chapter 1 Introduction.............................................................................................1 Motivation: Improving the understanding of the Late Ordovician climate system ........................................................................................................1 Structure of this thesis .......................................................................................4 Significance of each chapter ..............................................................................5 References.........................................................................................................8 Chapter 2 The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician ...................12 Abstract.............................................................................................................12 Introduction.......................................................................................................13 Previous Ordovician Model Results...................................................................16 Model Description and Boundary Conditions ....................................................18 Land-Sea Distribution and Topography ......................................................20 Orbital Parameters......................................................................................22 Solar Luminosity ........................................................................................23 Vegetation and Soil Type ...........................................................................23 Atmospheric pCO2......................................................................................23 Oceanic heat transport ................................................................................24 Initial Conditions........................................................................................25 Results ..............................................................................................................26 High Sea Level...........................................................................................29 Low Sea Level............................................................................................32 Low poleward heat transport.......................................................................34 Ice sheet model results................................................................................34 Discussion.........................................................................................................36 Paleogeography, atmospheric pCO2, and high sea level ..............................36 Sea level change.........................................................................................37 Poleward ocean heat transport ....................................................................38 Orbital parameters ......................................................................................40 Conclusions.......................................................................................................40 Acknowledgements ...........................................................................................41 References Cited ...............................................................................................42 v Chapter 3 Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation.......................................................50 Abstract.............................................................................................................50 Introduction.......................................................................................................51 Methods ............................................................................................................52 Results ..............................................................................................................55 Discussion.........................................................................................................62 Conclusions.......................................................................................................64 Acknowledgements ...........................................................................................65 References Cited ...............................................................................................65 Chapter 4 Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation........................................................................................70 Abstract.............................................................................................................70 Introduction.......................................................................................................71 Methods ............................................................................................................75 Results ..............................................................................................................78 Atmospheric forcing...................................................................................78 Ocean surface circulation............................................................................82 Global Ocean Temperature.........................................................................85 Meridional overturning...............................................................................88 Ocean heat transport ...................................................................................90 Atmospheric pCO2...............................................................................90 Paleogeography ...................................................................................92 Sea Level.............................................................................................92 Discussion.........................................................................................................93
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages196 Page
-
File Size-