Associahedron

Associahedron

Associahedron Jean-Louis Loday CNRS, Strasbourg April 23rd, 2005 Clay Mathematics Institute 2005 Colloquium Series Polytopes 7T 4 × 7TTTT 4 ×× 77 TT 44 × 7 simplex 4 ×× 77 44 × 7 ··· 4 ×× 77 ×× 7 o o ooo ooo cube o o ··· oo ooo oo?? ooo ?? ? ?? ? ?? OOO OO ooooOOO oooooo OO? ?? oOO ooo OOO o OOO oo?? permutohedron OOooo ? ··· OO o ? O O OOO ooo ?? OOO o OOO ?? oo OO ?ooo n = 2 3 ··· Permutohedron := convex hull of (n+1)! points n+1 (σ(1), . , σ(n + 1)) ∈ R Parenthesizing X= topological space with product (a, b) 7→ ab Not associative but associative up to homo- topy (ab)c • ) • a(bc) With four elements: ((ab)c)d H jjj HH jjjj HH jjjj HH tjj HH (a(bc))d HH HH HH HH H$ vv (ab)(cd) vv vv vv vv (( ) ) TTT vv a bc d TTTT vv TTT vv TTTz*vv a(b(cd)) We suppose that there is a homotopy between the two composite paths, and so on. Jim Stasheff Staheff’s result (1963): There exists a cellular complex such that – vertices in bijection with the parenthesizings – edges in bijection with the homotopies – 2-cells in bijection with homotopies of com- posite homotopies – etc, and which is homeomorphic to a ball. Problem: construct explicitely the Stasheff com- plex in any dimension. oo?? ooo ?? ?? ?? • OOO OO n = 0 1 2 3 Planar binary trees (see R. Stanley’s notes p. 189) Planar binary trees with n + 1 leaves, that is n internal vertices: n o ? ?? ? ?? ?? ?? Y0 = { | } ,Y1 = ,Y2 = ? , ? , ( ) ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? ?? ? Y3 = ? , ? , ? , ? , ? . Bijection between planar binary trees and paren- thesizings: x0 x1 x2 x3 x4 RRR ll ll RRR ll RRlRll lll RRlll RRR lll lll lRRR lll RRR lll RRlll (((x0x1)x2)(x3x4)) The notion of grafting s t 3 33 t ∨ s = 3 Associahedron n To t ∈ Yn we associate M(t) ∈ R : n M(t) := (a1b1, ··· , aibi, ··· , anbn) ∈ R ai = # leaves on the left side of the ith vertex bi = # leaves on the right side of the ith vertex Examples: ? ? ?? ?? ?? ?? M( ) = (1),M ? = (1, 2),M ? = (2, 1), ? ? ? ?? ?? ?? ?? M ? = (1, 2, 3),M ? = (1, 4, 1). For the tree corresponding to (((x0x1)x2)(x3x4)): (1 × 1, 2 × 1, 3 × 2, 1 × 1) = (1, 2, 6, 1) Definition of the associahedron: n−1 K := convex hull of M(t), t ∈ Yn Stasheff polytope Theorem The associahedron is isomorphic to the Stasheff complex as a cellular complex. GG OOO J GG t oo JJ G//G GG ttt ooo JJ / GG t JJ / G J // G/ tt ? // • OO ttt ?? OOO tt ?? t ? n = 0 1 2 3 3 K GG OO GG OOO GG OOO GG OOO GG Ot GG tt GG tt GG tt GG tt /G/G G tt /GG GG tt / GG GG tt // GG GG tt / GG G tt / GG // GG / GG // GG / GG / GG // GG / GG // // / / // // / / ?? // ?? / ?? // ?? / ?? ?? ?? ?? ?? ?? ?? ? K3 Construction of Kn+1 out of Kn - Start with Kn, boundary = cellular sphere - cells of the boundary of the form Kp × Kq where p + q = n − 1 - enlargement of Kp × Kq, make it Kp × Kq+1 - take the cone over the resulting space - check that this is Kn+1. Example n = 1: 1 – K oo ooo – K1 enlarged ooJJJ ooo JJ JJJ – Cone over K1 enlarged = K2 ooJJJ ooo JJ JJJ Example n = 2: – K2 // / 2 – enlarged GG OO K G O G/ GG ttt /GG G tt // GG / G/ /? / ?? / ?? ? 2 3 – Cone over enlarged = GG OO K K G O /G GG ttt /GG G tt // GG / G/ /? / ?? / ?? ? Exercise: # of simplices in Kn is (n + 1)n−1. Associahedron and permutohedron Y˜n = set of p.b. leveled trees with n + 1 leaves ?? // vs // ?? ?? / / ?? ?? // // ? ?? // // ?? / / ?? ?? ?? ?? ? ? ∼ φ : Sn = Y˜n −→ Yn (forget the levels) Proposition Let C = center of Pn−1 n+1 n+1 C = ( 2 ,..., 2 ). Then on has −−−−→ −−−−−→ CM(t) = X CM(σ) . σ∈φ−1(t) J oo JJ oo JJ ooo JJ oo ? JJ JJ JJ JJ ? t/ ?? tt ?? tt ? tt OO tt OOO tt OO tt OOtt Inversion of power series 2 3 n+1 f(x) = x + a1x + a2x + ··· + anx + ··· 2 3 n+1 g(x) = x + b1x + b2x + ··· + bnx + ··· such that f(g(x)) = x bn = polynomial in the coefficients ai, 1 ≤ i ≤ n b1 = −a1 2 b2 = 2a1 − a2 3 b3 = −5a1 + 5a1a2 − a3 4 2 2 b4 = 14a1 − 21a1a2 + 6a1a3 + 3a2 − a4 ··· = ··· P X ni n1 nk bn = (−1) λ(n1, . , nk)a1 ··· ak where n1 + 2n2 + ··· + knk = n n−1 Claim: λ(n1, . , nk) = # cells in K iso- morphic to (K0)n1 × · · · × (Kk−1)nk Examples: λ(0,..., 0, 1) = 1 1 2n λ(n) = Catalan number Cn = n+1 n Poset structure Partial order on the set Yn of p.b. trees ? ? ?? ?? ?? In Y2: ? −→ ? In Yn: change, locally in the tree t, ? ? ?? ?? ?? ? into ? to get s covering relation: t → s Examples: J oo JJ ooo JJ oo JJ ooo JJ woo JJ JJ JJ JJ JJ t$ tt tt tt tt OOO tt OO tt OOO tt OO tt OOz'tt 3 Poset structure of Y4 on K cGG /gOO GG OOO GG OOO GG OOO GG Ot: GG tt GG tt GG tt GG tt ×c/G/G G tt /GG GG tt / GG GG tt // GG GG tt / GG G /tt / GG // GG / GG // GG / GG / GG // GG / GG // ×// / / // // / / _?? // /g× ?? / ?? // ?? / ?? /× ?× ?? ?? ?? ?? ?? ?? ? / Algebraic structure K[Yn] = vector space over K spanned by p.b.trees having n vertices L Define inductively an operation on n≥0 K[Yn], t ∗ s := tl ∨ (tr ∗ s) + (t ∗ sl) ∨ sr, | = 1 Example: ? ?? ? ?? ?? ?? ?? ?? ?? ?? ?? ∗ = |∨(|∗ )+( ∗|)∨| = |∨ + ∨| = ? + ? Prop The operation ∗ is associative and unital Theorem t ∗ s = X x t/s≤x≤t\s t/s “over” operation, t\s “under” operation Dendriform algebras Define t ≺ s := tl∨(tr∗s) and t s := (t∗sl)∨sr, so t ∗ s = t ≺ s + t s Prop The operations ≺ and satisfy the fol- lowing relations (x ≺ y) ≺ z = x ≺ (y ∗ z), (x y) ≺ z = x (y ≺ z), (x ∗ y) z = x (y z). Definition A dendriform algebra is a vector space A over K equipped with two operations ≺ and satisfying the three relations above. Theorem The dendriform algebra L ( n≥0 K[Yn], ≺, ) is the free dendriform alge- ? bra on one generator, namely the tree ? . ? Hint: t ∨ s = t ? ≺ s Applications of dendriform algebras The dendriform algebras are involved in many topics: - shuffles and noncommutative shuffles, - preLie and brace algebras (algebraic topol- ogy), - Hopf algebras, noncommutative version of Connes and Kreimer (theoretical physics), - combinatorics (nc symmetric functions) - arithmetic of trees (arithmetree) - series indexed by trees (differential equations) Dendriform and preLie Definition preLie algebra: (A, ◦) such that (x ◦ y) ◦ z − x ◦ (y ◦ z) = (x ◦ z) ◦ y − x ◦ (z ◦ y) Claim 1: [x, y] := x ◦ y − y ◦ x is a Lie bracket Claim 2: x ◦ y := x ≺ y − y x is a preLie product Dend / preLie As / Lie Proof. x ≺ y + x y x ∗ y − y ∗ x = = x ◦ y − y ◦ x −y x − y ≺ x Series indexed by trees Power series: 2 n f(x) = a1x + a2x ··· + anx + ··· , n ∈ N Dendriform series: t f(x) = a1x + ··· + atx + ··· , t ∈ Y∞ • Addition: OK (term by term), • Multiplication: xtxs = xt∗s • Composition: f(g(x)) =? consequence of the Theorem about freeness: what is g(x)t for a p.b. tree t ? Write t as ? (generalized) product of the generator tree ? , ? then replace ? by g(x) and compute. Families of polytopes • 4 7T 4 × 7TTTT 44 ×× 77 TT 44 ×× 77 44 ×× 77 ×× 77 • ×× 7 oo oo ooo ooo • oo ooo GG OOO J GG t oo JJ G//G GG ttt ooo JJ / GG t JJ / G J // G/ tt ? // • OO ttt ?? OOO tt ?? t ? o oOO oooooo OOO ooOOO o o ?? ooo OO ? OOO oo?? • O OOooo ? OOO ooo Ooo ? OO ?? OOO OOO ?? oo OO ?ooo n = 0 1 2 3 End Many thanks for your attention ! GG OO GG OOO GG OOO GG OOO GG Ot GG tt GG tt GG tt GG tt /G/G G tt /GG GG tt / GG GG tt // GG GG tt / GG G tt / GG // GG / GG // GG / GG / GG // GG / GG // // / / // // / / ?? // ?? / ?? // ?? / ?? ?? ?? ?? ?? ?? ?? ? http://www-irma.u-strasbg.fr/ loday/ Associahedron Jean-Louis Loday Polytopes Parenthesizing Jim Stasheff Planar binary trees Associahedron Stasheff polytope K3 Construction of Kn+1 out of Kn Associahedron and permutohedron Inversion of integral series Poset structure 3 Poset structure of Y4 on K Algebraic structure Dendriform algebras Applications of dendriform algebras Dendriform and preLie Series indexed by trees Families of polytopes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us