CAN UNCLASSIFIED Structural design of the DRDDC notional destroyer John R. MacKay Malcolm J. Smith Liam Gannon Doug Perrault DRDC – Atlantic Research Centre Defence Research and Development Canada Scientific Report DRDC-RDDC-2019-R081 July 2019 CAN UNCLASSIFIED CAN UNCLASSIFIED IMPORTANT INFORMATIVE STATEMENTS This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule to the Defence Production Act. Disclaimer: This publication was prepared by Defence Research and Development Canada an agency of the Department of National Defence. The information contained in this publication has been derived and determined through best practice and adherence to the highest standards of responsible conduct of scientific research. This information is intended for the use of the Department of National Defence, the Canadian Armed Forces (“Canada”) and Public Safety partners and, as permitted, may be shared with academia, industry, Canada’s allies, and the public (“Third Parties”). Any use by, or any reliance on or decisions made based on this publication by Third Parties, are done at their own risk and responsibility. Canada does not assume any liability for any damages or losses which may arise from any use of, or reliance on, the publication. Endorsement statement: This publication has been peer-reviewed and published by the Editorial Office of Defence Research and Development Canada, an agency of the Department of National Defence of Canada. Inquiries can be sent to: [email protected]. Template in use: EO Publishing App for SR-RD-EC Eng 2018-12-19_v1 (new disclaimer).dotm © Her Majesty the Queen in Right of Canada (Department of National Defence), 2019 © Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2019 CAN UNCLASSIFIED Abstract This Scientific Report describes the structural design of a generic 7,600 tonne air-warfare destroyer, referred to as the DRDC Notional Destroyer (ND). The intent of the ND is to provide a test-bed for evaluating structural, stability, hydrodynamic and other naval engineering design standards, design concepts, analysis methods, and software. The ND is not based on either existing or future naval platforms. The current work is concerned only with the structural aspects of the ND design, which conforms with Lloyd’s Register’s Naval Ship Rules (NSR) for a worldwide service area. In addition to the standard Rules requirements for structures, the ND was designed against LR’s requirements for an Extreme Strength Assessment, Level 2. That entailed comparing the hull girder’s ultimate strength, as predicted using Smith’s progressive collapse method, against extreme lifetime global loads prescribed by the NSR. This Scientific Report describes the hypothetical performance requirements that drove the ND design, the modelling and analysis tools used, and the bottom-up design procedure employed by DRDC. The outcome of the design process is then presented, including the general arrangement; design loads; the final structural configuration and scantlings; and the results of the global and ultimate strength assessments. The evolution of the scantlings, from those meeting the standard NSR requirements to those meeting global and ultimate strength requirements, is discussed, as are the weight implications associated with meeting those requirements. Significance to defence and security The Notional Destroyer provides a benchmark against which the design and performance of existing and future RCN ships can be compared. It also serves as a test bed for studying alternative naval standards and classification society rules, design concepts and methods, novel design features, modelling and simulation techniques, and warship performance under environmental and military loads. DRDC-RDDC-2019-R081 i Résumé Le présent rapport décrit la conception de la structure du contre-torpilleur fictif (CTF) de RDDC, un contre-torpilleur générique de 7 600 tonnes destiné à la guerre aérienne. Le CTF vise à fournir un banc d’essai pour évaluer certaines normes de génie naval, notamment celles relatives à la structure, à la stabilité et aux qualités hydrodynamiques des navires, ainsi que certains concepts pour la conception, certaines méthodes d’analyse et certains logiciels. Le CTF n’est pas lié à une plate-forme navale actuelle ni à aucune future plateforme. Les travaux évoqués dans le présent rapport portent seulement sur les aspects structurels de la conception du CTF, laquelle est conforme aux Naval Ship Rules (NSR) de la Lloyd’s Register (LR) pour une zone de service mondial. En plus de respecter les exigences standard de la LR s’appliquant aux structures, le CTF a été conçu pour satisfaire à ses exigences en matière de résistance extrême (niveau 2). La résistance ultime de la poutre-coque a été évaluée en fonction des prédictions réalisées en appliquant la méthode d’effondrement en cascade de Smith et comparée aux charges globales extrêmes indiquées dans les NSR pour la durée de vie des poutres-coques. Dans le présent rapport scientifique, on décrit les exigences de rendement hypothétiques qui ont guidé la conception du CTF, les outils de modélisation et d’analyse employés et la procédure de conception de bas en haut utilisée par RDDC. On présente ensuite les résultats du processus de conception, y compris la configuration générale du navire, les charges théoriques, la configuration de la structure définitive, l’échantillonnage final ainsi que les résultats des évaluations en matière de résistance ultime et globale. Enfin, on discute de l’évolution des différents échantillonnages, en commençant par ceux qui satisfont aux exigences standard imposées par les NSR et en terminant par ceux qui respectent les normes de résistance ultime et globale, et on décrit les conséquences sur le poids du respect de ces exigences. Importance pour la défense et la sécurité Le contre-torpilleur fictif fournit un point de comparaison pour l’évaluation de la conception et du rendement des navires actuels et futurs de la Marine royale canadienne. Il servira aussi de banc d’essai pour étudier d’autres normes de génie naval et d’autres règles de société en matière de classification, des concepts et des méthodes de conception, de nouvelles caractéristiques de conception, des techniques de simulation et de modélisation ainsi que le rendement des navires de guerre lorsqu’ils sont assujettis à des charges militaires et environnementales. ii DRDC-RDDC-2019-R081 Table of contents Abstract ................................... i Significance to defence and security ......................... i Résumé ................................... ii Importance pour la défense et la sécurité ....................... ii Table of contents ............................... iii List of figures ................................. v List of tables ................................. vii 1 Introduction ................................ 1 2 Design assumptions ............................. 2 2.1 Performance requirements and particulars ................... 2 2.2 Hull form and lines ........................... 3 2.3 Structural design assumptions ........................ 7 3 Modelling and analysis tools .......................... 9 4 Design procedure ............................. 11 4.1 Specification of the general arrangement and structural configuration ........ 12 4.2 Derivation of local design loads ...................... 12 4.3 Determination of scantlings to resist local loads ................ 12 4.4 Derivation of global hull girder design loads ................. 13 4.5 Modification of scantlings to resist global loads ................ 14 4.6 Verification of the structural design .................... 16 5 General arrangement and structural configuration ................. 17 5.1 Baseline configuration ......................... 20 5.2 Engine room variants .......................... 21 5.3 Watertight subdivision variants ...................... 21 5.4 Structural variants ........................... 22 6 Design loads ............................... 23 6.1 Local design loads ........................... 23 6.2 Global design loads .......................... 25 7 Structural design .............................. 30 7.1 Longitudinal structure ......................... 30 7.2 Transverse structure .......................... 35 8 Global strength .............................. 37 8.1 Section properties ........................... 37 8.2 Stress criteria ............................. 37 8.3 Buckling criteria ........................... 39 9 Ultimate strength ............................. 44 DRDC-RDDC-2019-R081 iii 9.1 Ultimate bending moment results ..................... 45 9.2 Extreme shear strength assessment ..................... 50 10 Design evolution .............................. 51 11 Geometric model and design modifications .................... 56 11.1 Forward end design .......................... 57 11.2 Deck 1 openings ........................... 58 11.3 Transverse bulkhead modifications ..................... 59 11.4 Other modifications .......................... 61 12 Conclusions ............................... 62 References ................................. 64 Annex A Frame table ............................. 66 List of symbols/abbreviations/acronyms/initialisms .................. 67 iv DRDC-RDDC-2019-R081 List of figures Figure 1: Geometric model of a wind tunnel model used in the air wake study [6]. ...... 4 Figure 2: Body plan of the ND hull; showing station numbers. Scale in metres. ........ 5 Figure
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages82 Page
-
File Size-