Freescale Semiconductor Document Number: MRFE6VP5600H Technical Data Rev. 1, 1/2011 RF Power Field Effect Transistors High Ruggedness N--Channel MRFE6VP5600HR6 Enhancement--Mode Lateral MOSFETs MRFE6VP5600HSR6 These high ruggedness devices are designed for use in high VSWR industrial (including laser and plasma exciters), broadcast (analog and digital), aerospace and radio/land mobile applications. They are unmatched input and output designs allowing wide frequency range utilization, between 1.8 and 600 MHz. 1.8--600 MHz, 600 W CW, 50 V • Typical Performance: VDD =50Volts,IDQ = 100 mA LATERAL N--CHANNEL BROADBAND Pout f Gps ηD IRL Signal Type (W) (MHz) (dB) (%) (dB) RF POWER MOSFETs Pulsed (100 μsec, 600 Peak 230 25.0 74.6 -- 1 8 20% Duty Cycle) CW 600 Avg. 230 24.6 75.2 -- 1 7 • Capable of Handling a Load Mismatch of 65:1 VSWR, @ 50 Vdc, 230 MHz, at all Phase Angles, Designed for Enhanced Ruggedness • 600 Watts Pulsed Peak Power, 20% Duty Cycle, 100 μsec Features CASE 375D--05, STYLE 1 NI--1230 • Unmatched Input and Output Allowing Wide Frequency Range Utilization MRFE6VP5600HR6 • Device can be used Single--Ended or in a Push--Pull Configuration • Qualified Up to a Maximum of 50 VDD Operation • Characterized from 30 V to 50 V for Extended Power Range • Suitable for Linear Application with Appropriate Biasing • Integrated ESD Protection with Greater Negative Gate--Source Voltage Range for Improved Class C Operation CASE 375E--04, STYLE 1 • Characterized with Series Equivalent Large--Signal Impedance Parameters NI--1230S • RoHS Compliant MRFE6VP5600HSR6 • In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13 inch Reel. For R5 Tape and Reel options, see p. 12. PARTS ARE PUSH--PULL Table 1. Maximum Ratings Rating Symbol Value Unit RFin/VGS 31RFout/VDS Drain--Source Voltage VDSS --0.5, +130 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg --65 to +150 °C RFin/VGS 42RFout/VDS Case Operating Temperature TC 150 °C Total Device Dissipation @ TC =25°C PD 1667 W Derate above 25°C 8.33 W/°C (Top View) (1,2) Operating Junction Temperature TJ 225 °C Figure 1. Pin Connections Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case °C/W Case Temperature 68°C, 600 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 100 mA, 230 MHz ZθJC 0.022 Case Temperature 60°C, 600 W CW, 100 mA, 230 MHz RθJC 0.12 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2010--2011. All rights reserved. MRFE6VP5600HR6 MRFE6VP5600HSR6 RF Device Data Freescale Semiconductor 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 (Minimum) Machine Model (per EIA/JESD22--A115) B (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA =25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics (1) Gate--Source Leakage Current IGSS — — 1 μAdc (VGS =5Vdc,VDS =0Vdc) Drain--Source Breakdown Voltage V(BR)DSS 130 — — Vdc (VGS =0Vdc,ID = 100 mA) Zero Gate Voltage Drain Leakage Current IDSS — — 10 μAdc (VDS =50Vdc,VGS =0Vdc) Zero Gate Voltage Drain Leakage Current IDSS — — 20 μAdc (VDS = 100 Vdc, VGS =0Vdc) On Characteristics (1) Gate Threshold Voltage VGS(th) 1.7 2.2 2.7 Vdc (VDS =10Vdc,ID = 960 μAdc) Gate Quiescent Voltage VGS(Q) 2.0 2.5 3.0 Vdc (VDD =50Vdc,ID = 100 mAdc, Measured in Functional Test) (1) Drain--Source On--Voltage VDS(on) — 0.26 — Vdc (VGS =10Vdc,ID =2Adc) Dynamic Characteristics (1) Reverse Transfer Capacitance Crss — 1.60 — pF (VDS =50Vdc± 30 mV(rms)ac @ 1 MHz, VGS =0Vdc) Output Capacitance Coss — 129 — pF (VDS =50Vdc± 30 mV(rms)ac @ 1 MHz, VGS =0Vdc) Input Capacitance Ciss — 342 — pF (VDS =50Vdc,VGS =0Vdc± 30 mV(rms)ac @ 1 MHz) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD =50Vdc,IDQ = 100 mA, Pout = 600 W Peak (120 W Avg.), f = 230 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle Power Gain Gps 23.5 25.0 26.5 dB Drain Efficiency ηD 73.5 74.6 — % Input Return Loss IRL — -- 1 8 -- 1 2 dB 1. Each side of device measured separately. MRFE6VP5600HR6 MRFE6VP5600HSR6 RF Device Data 2 Freescale Semiconductor V BIAS + C10 C11 C12 C13 COAX1 R1 Z11 Z3 Z5 Z7 Z9 L1 Z13 RF INPUT Z1 Z2 C2 C4 C5 Z4 Z6 Z8 Z10 Z14 C1 L2 C3 Z12 COAX2 R2 V BIAS + C6 C7 C8 C9 + + + VSUPPLY L3 C22 C23 C24 C25 Z19 Z17 COAX3 Z15 Z21 Z23 Z25 C16 Z27 Z29 C17 RF Z31 Z32 OUTPUT DUT C14 C15 C20 C21 Z16 Z22 Z24 Z26 Z28 Z30 C18 Z18 COAX4 Z20 C19 L4 + + + VSUPPLY C26 C27 C28 C29 Z1 0.192″ x 0.082″ Microstrip Z11*, Z12* 0.872″ x 0.058″ Microstrip Z23, Z24 1.251″ x 0.300″ Microstrip Z2 0.175″ x 0.082″ Microstrip Z13, Z14 0.412″ x 0.726″ Microstrip Z25, Z26 0.127″ x 0.300″ Microstrip Z3, Z4 0.170″ x 0.100″ Microstrip Z15, Z16 0.371″ x 0.507″ Microstrip Z27, Z28 0.058″ x 0.300″ Microstrip Z5, Z6 0.116″ x 0.285″ Microstrip Z17*, Z18* 0.466″ x 0.363″ Microstrip Z29, Z30 0.058″ x 0.300″ Microstrip Z7, Z8 0.116″ x 0.285″ Microstrip Z19*, Z20* 1.187″ x 0.154″ Microstrip Z31 0.186″ x 0.082″ Microstrip Z9, Z10 0.108″ x 0.285″ Microstrip Z21, Z22 0.104″ x 0.507″ Microstrip Z32 0.179″ x 0.082″ Microstrip * Line length includes microstrip bends Figure 1. MRFE6VP5600HR6(HSR6) Test Circuit Schematic -- Pulsed MRFE6VP5600HR6 MRFE6VP5600HSR6 RF Device Data Freescale Semiconductor 3 C23 C24 C25 C10 C11 C12 C13 C22 COAX1 COAX3 R1 L3 C4 C16 C2 L1 C17 C5 C14 C15 L2 C18 C20 C1 C3 C19 C21 R2 L4 COAX2 COAX4 C26 C9 C6 C7 C8 MRFE6VP5600H C27 C28 C29 Rev. 1 Figure 2. MRFE6VP5600HR6(HSR6) Test Circuit Component Layout -- Pulsed Table 5. MRFE6VP5600HR6(HSR6) Test Circuit Component Designations and Values -- Pulsed Part Description Part Number Manufacturer C1 12 pF Chip Capacitor ATC100B120JT500XT ATC C2, C3 27 pF Chip Capacitors ATC100B270JT500XT ATC C4 0.8--8.0 pF Variable Capacitor, Gigatrim 27291SL Johanson C5 33 pF Chip Capacitor ATC100B330JT500XT ATC C6, C10 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C7, C11 0.1 μF Chip Capacitors CDR33BX104AKYS AVX C8, C12 220 nF Chip Capacitors C1812C224K5RACTU Kemet C9, C13, C22, C26 1000 pF Chip Capacitors ATC100B102JT50XT ATC C14 36 pF Chip Capacitor ATC100B360JT500XT ATC C15 51 pF Chip Capacitor ATC100B510GT500XT ATC C16, C17, C18, C19 240 pF Chip Capacitors ATC100B241JT200XT ATC C20 39 pF Chip Capacitor ATC100B390JT500XT ATC C21 10 pF Chip Capacitor ATC100B100JT500XT ATC C23, C24, C25, C27, C28, C29 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp Coax1, 2, 3, 4 25 Ω Semi Rigid Coax, 2.2″ Long UT--141C--25 Micro Coax L1, L2 5 nH Inductors A02TKLC Coilcraft L3, L4 6.6 nH Inductors GA3093--ALC Coilcraft R1, R2 10 Ω Chip Resistors CRCW120610R0JNEA Vishay PCB 0.030″, εr =2.55 AD255A Arlon MRFE6VP5600HR6 MRFE6VP5600HSR6 RF Device Data 4 Freescale Semiconductor TYPICAL CHARACTERISTICS 1000 64 VDD =50Vdc,IDQ = 100 mA, f = 230 MHz C iss 63 Pulse Width = 100 μsec, 20% Duty Cycle 62 100 C P3dB = 58.3 dBm (679 W) oss Ideal 61 P2dB = 58.2 dBm (664 W) Measured with ±30 mV(rms)ac @ 1 MHz VGS =0Vdc 60 P1dB = 58.0 dBm 10 (632 W) C, CAPACITANCE (pF) 59 Actual , OUTPUT POWER (dBm)58 PULSED Crss out P 1 57 02010 30 40 50 31 32 33 34 35 36 37 P , INPUT POWER (dBm) PULSED VDS, DRAIN--SOURCE VOLTAGE (VOLTS) in Note: Each side of device measured separately. Figure 4. Pulsed Output Power versus Input Power Figure 3. Capacitance versus Drain--Source Voltage 27 90 27 V =50Vdc,I = 100 mA, f = 230 MHz VDD =50Vdc,IDQ = 100 mA, f = 230 MHz DD DQ 26 Pulse Width = 100 μsec, 20% Duty Cycle 26 Pulse Width = 100 μsec, 20% Duty Cycle 80 25 25 70 24 Gps 24 60 23 22 23 50 50 V 21 , POWER GAIN (dB) , POWER GAIN (dB) 45 V DRAIN EFFICIENCY (%) ps 22 40 ps 20 G G D, 40 V ηD η 19 21 30 35 V 18 VDD =30V 20 20 17 40 100 1000 0 100 200300 400 500 600 700 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency Figure 6. Pulsed Power Gain versus versus Output Power Output Power 90 27 90 VDD =50Vdc,IDQ = 100 mA, f = 230 MHz 25_C 35 V 40 V 45 V 50 V 80 VDD =30V 26 Pulse Width = 100 μsec, 20% Duty Cycle 80 85_C 70 25 -- 3 0 _C 70 Gps 60 24 60 TC =--30_C 50 23 25_C 50 , POWER GAIN (dB) DRAIN EFFICIENCY (%) ps 40 22 40 DRAIN EFFICIENCY (%) G , D, D η ηD η V =50Vdc,I = 100 mA, f = 230 MHz 30 DD DQ 21 85_C 30 Pulse Width = 100 μsec, 20% Duty Cycle 20 20 20 0 100 200 300 400 500 600 700 40 100 1000 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 7.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-