The Petrov Classification

The Petrov Classification

Appendix A The Petrov Classification The Weyl tensor Cabcd, due to its symmetries, can be represented as a 6 x 6 matrix, denoted by CAB. One can then classify the Weyl tensor by using the following simple approach. The Weyl symmetry c~bc = 0 allows us to write cAB as where A and B are 3 x 3 matrices, such that A is symmetric and both A and B are trace free. Above matrix can also be described by the complex 3 x 3 matrix D = A+ i B for which there are the following three possible Jordan forms: Petrov Type I Q 0 0) ( 0 f3 0 0 0 1 Petrov Type II Q 1 0 ) ( 0 Q 0 0 0 -2a Petrov Type III (H!) where the trace free condition on A and B ( and hence on D) is used. Following are subcases of Petrov Type I and II: Petrov Type D Subcase of type I where a= {3. Petrov Type 0 Subcase of type I where a = f3 = 1 = 0 {:::::::} C = 0. Petrov Type N Subcase of type II where a = 0. 193 194 APPENDIX A. THE PETROV CLASSIFICATION An alternative and very useful version of the Petrov classification is due to the work of L. Bel [10], known as the Bel criteria. In this criteria, null eigen bivectors and their principal null directions play an important role. Define the complex self + dual Weyl tensor Cabcd by + * Cabcd= Cabcd + i Cabcd, where Cis* the dual of C. Let a null direction k satisfy the following k[eCa]bc[dkf] kb kc = 0. (A.1) Then the Bel criteria are as follows: (1) Cis Petrov type I if there are exactly 4 distinct null vectors (called its principal null directions) k satisfying (A.1). (2) C is Petrov type II if there are two coincident null directions k satisfying (A.1). (3) C is Petrov type III if there are three coincident null directions k satisfying . + (A.1). Also CIS of type III {::::::} Cabcd ka kc = 0. (4) Cis Petrov type N if there are all four coincident null directions k satisfying + (A.1). Also Cis of type N {::::::} Cabcd kd = 0. (5) C is Petrov type D if its principal null directions are coincident pairs. (6) The Petrov type 0 is characterized by zero Weyl tensor and it does not single out any null direction. Bibliography [1] Adler, R., Bazin, M., and Schiffer, M. Introduction to General Relativity, McGraw-Hill, New York, 1975. [2] Aichelburg, P. C. Curvature collineations for gravitational pp-waves, J. Math. Phys., 11, 1970, 2458-2462. [3] Alias, L. J., Romero, A., and Sanchez, W. Spacelike hypersurfaces of constant mean curvature in certain spacetimes. Nonlinear Analysis, Theory, Methods & Applications, 30, no. 1, (Proc. 2nd World Congress of Nonlinear Analysis, Elsevier Science Ltd.), 1997, 655-661. [4] Arnold, V.I. Contact geometry: The geometrical method of Gibbs's Thermo­ dynamics, Proc. Gibbs Symposium, Yale University, 1989, 163-179. [5] Barnes, A. Projective collineations in Einstein spaces, Class. Quant. Grav., 10, 1993, 1139-1145. [6] Barrabes, C. and Israel, W. Thin shells in general relativity and cosmology: the lightlike limit, Physical Review D., 43, no. 4, 1991, 1129-1142. [7] Barros, M. and Romero, A. Indefinite Kaehler manifolds, Math. Ann., 261,1982, 55-62. [8] Beem, J. K., Ehrlich, P. E. and Easley, K. L. Global Lorentzian Geometry, Marcel Dekker, Inc. New York, Second Edition, 1996. [9] Bejancu, A. and Duggal, K. L. Real hypersurfaces of indefinite Kaehler man­ ifolds, Internat. J. Math. and Math. Sci., 16, 1993, 545-556. [10] Bel, L. Quelques remarques sur le classification de Petrov, C. R. Acad. Sci. (Paris), 148, 1959, 2561-2564. [11] Benenti, S. and Francaviglia, M. The theory of separability of the Hamilton­ Jacobi equations and its applications to relativity, General relativity and Grav­ itation I (edited by A. Held), 1980, 393-439. [12] Berger, M. Trois remarques sur les varietes riemanniennes a courbure positive, C. R. A cad. Sc. Paris, Series A., 263, 1966, 76-78. [13] Berger, B. Homothetic and conformal motions in spacelike slices of solutions of Einstein equations, J. Math. Phys., 17, 1976, 1268-1273. 195 196 BIBLIOGRAPHY [14] Bishop, R. L. and Goldberg, S. I. A characterization of the Euclidean sphere, Bull. Am. Math. Soc., 72, 1966, 122-124. [15] Bishop, R. L. and Goldberg, S. I. Tensor Analysis on Manifolds, The MacMil­ lan Company, New York, 1986. [16] Bishop, R. L. and O'Neill, B. Manifolds of negative curvature, 'frans. Amer. Math. Soc., 145, 1969, 1-49. [17] Blair, D. E. Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, 1976, Springer-Verlag, Berlin. [18] Blair, D. E. Geometry of manifolds with structure group U(n) x O(s), J. Diff. Geom., 4, 1970, 155-167. [19] Blair, D. E., Koufogiorgos, T. and Sharma, R. A classification of 3-dimensional contact metric manifolds with Q¢ = ,PQ, Kodai Math. J., 13, 1990, 391-401. [20] Blair, D. E. and Sharma, R. Three dimensional locally symmetric contact metric manifolds, Boll. U.M.I.,(7)4-A, 1990, 385-390. [21] Blair, D. E. and Sierra, J. M. 5-dimensionallocally symmetric contact metric manifolds, Boll. U.M.I.(7)7-A, 1993, 299-311. [22] Bochner, S. Curvature and Betti numbers, Ann. Math., 49, 1948, 379-390. [23] Bonnor, W. B. Null hypersurfaces in Minkowski spacetime, Tensor N.S., 24, 1972, 329-345. [24] Brocker, Th. and Jiinich, K. Introduction to Differential Topology, Cambridge University Press, Cambridge, 1982. [25] Cagnac, Fr. Geometrie de hypersurfaces isotropes, C. R. Acad. Sci. Paris, 201, 1965, 3045-3048. [26] Candelas, P., Horowitz, G., Strominger, A. and Witten, E. Vacuum configu­ rations for superstrings, Nucl. Phys., B 258, 1985, 46-74. [27] Capocci, M.S. and Hall, G. S. Conformal vector fields on decomposable space­ times, Gravitation & Cosmology, 3, no. 1(9), 1997, 001-010. [28] Carot, J., da Costa, J. and Vaz, E.G.L. Matter Collineations: The inverse "symmetry inheritance" problem, J. Math. Phys., 35, 1994, 4832-4838. [29] Carter, B. Killing horizons and orthogonally transitive groups in spacetimes, J. Math. Phys., 10, 1969, 70-81. [30] Castejon-Amenedo, J. and Coley, A. A. Exact solutions with conformal Killing vector fields, Class. Quant. Grav., 9, 1992, 2203-2215. [31] Coley, A. A. and Tupper, B. 0. J. Special conformal Killing vector spacetimes and symmetry inheritance, J. Math. Phys., 30, 1989, 2616-2625. [32] Coley, A. A. and Tupper, B.O.J. Spacetimes admitting special affine conformal vectors, J. Math. Phys., 31, 1990, 649-652. BIBLIOGRAPHY 197 [33] Coley, A. A. and Tupper, B.O.J. Spacetimes admitting inheriting conformal Killing vector fields, Class. Quant. Grav., 7, 1990, 1961-1981. [34] Coley, A. A. and Tupper, B.O.J. Spherical symmetric spacetimes admitting inheriting conformal Killing vector fields, Class. Quant. Grav., 7, 1990, 2195- 2214. [35] Collinson, C. D. Curvature collineations in empty spacetimes, J. Math. Phys., 11, 1970, 818-819. [36] Collinson, C.D. Proper affine collineation in Robertson-Walker spacetimes, J. Math. Phys., 29, 1988, 1972-73. [37] Collinson, C. D. and French, D. C. Null tetrad approach to motions in empty spacetime, J. Math. Phys., 8, 1967, 701-708. [38] Dallmer, F. Zur Geometrie der Metrish Singularen Hyperflachenim Vierdi­ mensionalen Pseudoeuklidischen Raum, diplomarbeit, Universitat Karlsruhe, 1987. [39] Dautcourt, G. Characteristic hypersurfaces in general relativity, J. Math. Phys., 8, 1967, 1492-1501. [40] Debney, G. C. and Zund, J.D. A note on the classification of electromagnetic field, Tensor N.S., 22, 1971, 333-340. [41] Davis, W. R. and Moss, M. K. Conservation laws of the general theory of relativity II, Nuovo Cimento, 38, 1965, 1558-1569. [42] Duggal, K. L. On almost contingent manifolds of second class with applica­ tions in relativity, Can. Math. Bull., 21, 1978, 289-295. [43] Duggal, K. L. Existence of two Killing vector fields on the spacetime of general relativity, Tensor N.S., 32, 1978, 318-322. [44] Duggal, K. L. Einstein Maxwell equations compatible with certain Killing vectors with light velocity, Annali di Matematica Pure ed Applicata, (lV), 120, 1979, 263-268. [45] Duggal, K. L. On the four current source of the electromagnetic fields, Annali di Matematica pureed Applicata, (IV), 120, 1979, 305-313. [46] Duggal, K. L. Relativistic fluids with shear and timelike conformal collineations, J. Math. Phys., 28, 1987, 2700-2704. [47] Duggal, K. L. Some applications of globally framed structures to relativity, Annali di Matematica pureed Applicata, (lV), 1988, 77-90. [48] Duggal, K. L. Lorentzian geometry of CR-submanifolds, Acta. Appl. Math., 17, 1989, 171-193. [49] Duggal, K. L. Relativistic fluids and metric symmetries, J. Math. Phys., 30, 1989, 1316-1322. 198 BIBLIOGRAPHY [50] Duggal, K. L. Lorentzian geometry of globally framed manifolds, Acta Appl. Math., 19, 1990, 131-148. [51] Duggal, K. L. Spacetime manifolds and contact structures, Internat. J. Math. & Math. Sci., 13, 1990, 545-554. [52] Duggal, K. L. Affine conformal vector fields in semi-Riemannian manifolds, Acta. Appl. Math., 23, 1991, 275-294. [53] Duggal, K. L. Curvature inheritance symmetry in Riemannian spaces with applications to fluid spacetimes, J. Math. Phys., 3:3, 1992, 2989-2997. [54] Duggal, K. L. Symmetry inheritance in Riemannian manifolds with applica­ tions, Acta. Appl. Math., 31, 1993, 225-247. [55] Duggal, K. L., Asgekar, G. G. and Aherkar, S. M. A class of shear-free, non­ static models for anisotropic magnetofl.uid system, J. Math. Phys., 36, 1995, 2929-2940. [56] Duggal, K. L. and Bejancu, A. Spacetime geometry of CR-structures, in Dif­ ferential Geometry and Mathematical Physics (J. K. Beem and K. L. Duggal, eds.), Contemporary Math. Series Vol.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    25 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us