Appendix A The Petrov Classification The Weyl tensor Cabcd, due to its symmetries, can be represented as a 6 x 6 matrix, denoted by CAB. One can then classify the Weyl tensor by using the following simple approach. The Weyl symmetry c~bc = 0 allows us to write cAB as where A and B are 3 x 3 matrices, such that A is symmetric and both A and B are trace free. Above matrix can also be described by the complex 3 x 3 matrix D = A+ i B for which there are the following three possible Jordan forms: Petrov Type I Q 0 0) ( 0 f3 0 0 0 1 Petrov Type II Q 1 0 ) ( 0 Q 0 0 0 -2a Petrov Type III (H!) where the trace free condition on A and B ( and hence on D) is used. Following are subcases of Petrov Type I and II: Petrov Type D Subcase of type I where a= {3. Petrov Type 0 Subcase of type I where a = f3 = 1 = 0 {:::::::} C = 0. Petrov Type N Subcase of type II where a = 0. 193 194 APPENDIX A. THE PETROV CLASSIFICATION An alternative and very useful version of the Petrov classification is due to the work of L. Bel [10], known as the Bel criteria. In this criteria, null eigen bivectors and their principal null directions play an important role. Define the complex self + dual Weyl tensor Cabcd by + * Cabcd= Cabcd + i Cabcd, where Cis* the dual of C. Let a null direction k satisfy the following k[eCa]bc[dkf] kb kc = 0. (A.1) Then the Bel criteria are as follows: (1) Cis Petrov type I if there are exactly 4 distinct null vectors (called its principal null directions) k satisfying (A.1). (2) C is Petrov type II if there are two coincident null directions k satisfying (A.1). (3) C is Petrov type III if there are three coincident null directions k satisfying . + (A.1). Also CIS of type III {::::::} Cabcd ka kc = 0. (4) Cis Petrov type N if there are all four coincident null directions k satisfying + (A.1). Also Cis of type N {::::::} Cabcd kd = 0. (5) C is Petrov type D if its principal null directions are coincident pairs. (6) The Petrov type 0 is characterized by zero Weyl tensor and it does not single out any null direction. Bibliography [1] Adler, R., Bazin, M., and Schiffer, M. Introduction to General Relativity, McGraw-Hill, New York, 1975. [2] Aichelburg, P. C. Curvature collineations for gravitational pp-waves, J. Math. Phys., 11, 1970, 2458-2462. [3] Alias, L. J., Romero, A., and Sanchez, W. Spacelike hypersurfaces of constant mean curvature in certain spacetimes. Nonlinear Analysis, Theory, Methods & Applications, 30, no. 1, (Proc. 2nd World Congress of Nonlinear Analysis, Elsevier Science Ltd.), 1997, 655-661. [4] Arnold, V.I. Contact geometry: The geometrical method of Gibbs's Thermo­ dynamics, Proc. Gibbs Symposium, Yale University, 1989, 163-179. [5] Barnes, A. Projective collineations in Einstein spaces, Class. Quant. Grav., 10, 1993, 1139-1145. [6] Barrabes, C. and Israel, W. Thin shells in general relativity and cosmology: the lightlike limit, Physical Review D., 43, no. 4, 1991, 1129-1142. [7] Barros, M. and Romero, A. Indefinite Kaehler manifolds, Math. Ann., 261,1982, 55-62. [8] Beem, J. K., Ehrlich, P. E. and Easley, K. L. Global Lorentzian Geometry, Marcel Dekker, Inc. New York, Second Edition, 1996. [9] Bejancu, A. and Duggal, K. L. Real hypersurfaces of indefinite Kaehler man­ ifolds, Internat. J. Math. and Math. Sci., 16, 1993, 545-556. [10] Bel, L. Quelques remarques sur le classification de Petrov, C. R. Acad. Sci. (Paris), 148, 1959, 2561-2564. [11] Benenti, S. and Francaviglia, M. The theory of separability of the Hamilton­ Jacobi equations and its applications to relativity, General relativity and Grav­ itation I (edited by A. Held), 1980, 393-439. [12] Berger, M. Trois remarques sur les varietes riemanniennes a courbure positive, C. R. A cad. Sc. Paris, Series A., 263, 1966, 76-78. [13] Berger, B. Homothetic and conformal motions in spacelike slices of solutions of Einstein equations, J. Math. Phys., 17, 1976, 1268-1273. 195 196 BIBLIOGRAPHY [14] Bishop, R. L. and Goldberg, S. I. A characterization of the Euclidean sphere, Bull. Am. Math. Soc., 72, 1966, 122-124. [15] Bishop, R. L. and Goldberg, S. I. Tensor Analysis on Manifolds, The MacMil­ lan Company, New York, 1986. [16] Bishop, R. L. and O'Neill, B. Manifolds of negative curvature, 'frans. Amer. Math. Soc., 145, 1969, 1-49. [17] Blair, D. E. Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, 1976, Springer-Verlag, Berlin. [18] Blair, D. E. Geometry of manifolds with structure group U(n) x O(s), J. Diff. Geom., 4, 1970, 155-167. [19] Blair, D. E., Koufogiorgos, T. and Sharma, R. A classification of 3-dimensional contact metric manifolds with Q¢ = ,PQ, Kodai Math. J., 13, 1990, 391-401. [20] Blair, D. E. and Sharma, R. Three dimensional locally symmetric contact metric manifolds, Boll. U.M.I.,(7)4-A, 1990, 385-390. [21] Blair, D. E. and Sierra, J. M. 5-dimensionallocally symmetric contact metric manifolds, Boll. U.M.I.(7)7-A, 1993, 299-311. [22] Bochner, S. Curvature and Betti numbers, Ann. Math., 49, 1948, 379-390. [23] Bonnor, W. B. Null hypersurfaces in Minkowski spacetime, Tensor N.S., 24, 1972, 329-345. [24] Brocker, Th. and Jiinich, K. Introduction to Differential Topology, Cambridge University Press, Cambridge, 1982. [25] Cagnac, Fr. Geometrie de hypersurfaces isotropes, C. R. Acad. Sci. Paris, 201, 1965, 3045-3048. [26] Candelas, P., Horowitz, G., Strominger, A. and Witten, E. Vacuum configu­ rations for superstrings, Nucl. Phys., B 258, 1985, 46-74. [27] Capocci, M.S. and Hall, G. S. Conformal vector fields on decomposable space­ times, Gravitation & Cosmology, 3, no. 1(9), 1997, 001-010. [28] Carot, J., da Costa, J. and Vaz, E.G.L. Matter Collineations: The inverse "symmetry inheritance" problem, J. Math. Phys., 35, 1994, 4832-4838. [29] Carter, B. Killing horizons and orthogonally transitive groups in spacetimes, J. Math. Phys., 10, 1969, 70-81. [30] Castejon-Amenedo, J. and Coley, A. A. Exact solutions with conformal Killing vector fields, Class. Quant. Grav., 9, 1992, 2203-2215. [31] Coley, A. A. and Tupper, B. 0. J. Special conformal Killing vector spacetimes and symmetry inheritance, J. Math. Phys., 30, 1989, 2616-2625. [32] Coley, A. A. and Tupper, B.O.J. Spacetimes admitting special affine conformal vectors, J. Math. Phys., 31, 1990, 649-652. BIBLIOGRAPHY 197 [33] Coley, A. A. and Tupper, B.O.J. Spacetimes admitting inheriting conformal Killing vector fields, Class. Quant. Grav., 7, 1990, 1961-1981. [34] Coley, A. A. and Tupper, B.O.J. Spherical symmetric spacetimes admitting inheriting conformal Killing vector fields, Class. Quant. Grav., 7, 1990, 2195- 2214. [35] Collinson, C. D. Curvature collineations in empty spacetimes, J. Math. Phys., 11, 1970, 818-819. [36] Collinson, C.D. Proper affine collineation in Robertson-Walker spacetimes, J. Math. Phys., 29, 1988, 1972-73. [37] Collinson, C. D. and French, D. C. Null tetrad approach to motions in empty spacetime, J. Math. Phys., 8, 1967, 701-708. [38] Dallmer, F. Zur Geometrie der Metrish Singularen Hyperflachenim Vierdi­ mensionalen Pseudoeuklidischen Raum, diplomarbeit, Universitat Karlsruhe, 1987. [39] Dautcourt, G. Characteristic hypersurfaces in general relativity, J. Math. Phys., 8, 1967, 1492-1501. [40] Debney, G. C. and Zund, J.D. A note on the classification of electromagnetic field, Tensor N.S., 22, 1971, 333-340. [41] Davis, W. R. and Moss, M. K. Conservation laws of the general theory of relativity II, Nuovo Cimento, 38, 1965, 1558-1569. [42] Duggal, K. L. On almost contingent manifolds of second class with applica­ tions in relativity, Can. Math. Bull., 21, 1978, 289-295. [43] Duggal, K. L. Existence of two Killing vector fields on the spacetime of general relativity, Tensor N.S., 32, 1978, 318-322. [44] Duggal, K. L. Einstein Maxwell equations compatible with certain Killing vectors with light velocity, Annali di Matematica Pure ed Applicata, (lV), 120, 1979, 263-268. [45] Duggal, K. L. On the four current source of the electromagnetic fields, Annali di Matematica pureed Applicata, (IV), 120, 1979, 305-313. [46] Duggal, K. L. Relativistic fluids with shear and timelike conformal collineations, J. Math. Phys., 28, 1987, 2700-2704. [47] Duggal, K. L. Some applications of globally framed structures to relativity, Annali di Matematica pureed Applicata, (lV), 1988, 77-90. [48] Duggal, K. L. Lorentzian geometry of CR-submanifolds, Acta. Appl. Math., 17, 1989, 171-193. [49] Duggal, K. L. Relativistic fluids and metric symmetries, J. Math. Phys., 30, 1989, 1316-1322. 198 BIBLIOGRAPHY [50] Duggal, K. L. Lorentzian geometry of globally framed manifolds, Acta Appl. Math., 19, 1990, 131-148. [51] Duggal, K. L. Spacetime manifolds and contact structures, Internat. J. Math. & Math. Sci., 13, 1990, 545-554. [52] Duggal, K. L. Affine conformal vector fields in semi-Riemannian manifolds, Acta. Appl. Math., 23, 1991, 275-294. [53] Duggal, K. L. Curvature inheritance symmetry in Riemannian spaces with applications to fluid spacetimes, J. Math. Phys., 3:3, 1992, 2989-2997. [54] Duggal, K. L. Symmetry inheritance in Riemannian manifolds with applica­ tions, Acta. Appl. Math., 31, 1993, 225-247. [55] Duggal, K. L., Asgekar, G. G. and Aherkar, S. M. A class of shear-free, non­ static models for anisotropic magnetofl.uid system, J. Math. Phys., 36, 1995, 2929-2940. [56] Duggal, K. L. and Bejancu, A. Spacetime geometry of CR-structures, in Dif­ ferential Geometry and Mathematical Physics (J. K. Beem and K. L. Duggal, eds.), Contemporary Math. Series Vol.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages25 Page
-
File Size-