Metazoan Ectoparasites of Two Teleost Fish, Boops Boops (L.) and Mullus Barbatus Barbatus L

Metazoan Ectoparasites of Two Teleost Fish, Boops Boops (L.) and Mullus Barbatus Barbatus L

Metazoan ectoparasites of two teleost fish, Boops boops (L.) and Mullus barbatus barbatus L. from Algerian coast: diversity, parasitological index and impact of parasitism by Zouhir RAMDANE* (1, 2), Jean-Paul TRILLES (3), Kélig MAHÉ (4) & Rachid AMARA (5) Abstract. – A total of 664 Boops Boops (Linnaeus, 1758) and 823 Mullus barbatus barbatus Linnaeus, 1758 from the east coast of Algeria were examined to study their parasitofauna. We collected eleven parasitic species (two monogeneans, three copepods, five isopods and one Branchiura) fromB. boops, and four parasitic species (two copepods and two isopods) from M. barbatus barbatus. Five species were reported for the first time in Algeria. The site of attachment on the host and the degree of specificity varied according to the parasite species while the infestation rate changed according to the month and the host size. The parasitism did not show a sig- nificant negative impact on the biological parameters of the fish host. Résumé. – Ectoparasites métazoaires de deux espèces de téléostéens, Boops Boops (L.) et Mullus barbatus bar- © SFI batus L., des côtes d’Algérie : diversité, taux d’infestation et impact du parasitisme. Received: 1 Apr. 2012 Accepted: 8 Jan. 2013 Au total, 664 Boops Boops (Linnaeus, 1758) et 823 Mullus barbatus barbatus Linnaeus, 1758 capturés le Editor: E. Dufour long du littoral Est de l’Algérie ont été examinés afin d’étudier leur parasitofaune. Sur B. boops, nous avons récolté 11 espèces d’ectoparasites (deux monogènes, trois copépodes, cinq isopodes et un Branchioura), et qua- tre espèces sur M. barbatus barbatus (deux copépodes et deux isopodes). Parmi les 14 ectoparasites identifiés, cinq ont été récoltés pour la première fois en Algérie. Le site d’attache sur l’hôte et le degré de spécificité étaient Key words différents selon les espèces de parasites. Le taux d’infestation variait selon le mois et la taille de l’hôte. Le para- Boops boops sitisme n’a induit aucun impact négatif significatif sur les paramètres biologiques des poissons hôtes. Mullus barbatus barbatus Algeria Ectoparasites Impact of parasitism Parasitism can induce stress to Heck, 1977; Herrera-Cubilla, 1985; Hajji et al., 1994). aquatic organisms (Lemly and Despite the potential importance of parasitism in marine Esch, 1984) and exerts a strong control of the host popula- ecology (Zander et al., 2002; Lafferty et al., 2006) its effects tion dynamic, inducing great economic losses (Mann, 1952; on biological performance and populations dynamic of fish Kabata, 1955, 1958; Anderson and May, 1979; Bragoni et are rarely assessed. Moreover, there is usually no emphasis al., 1983; Cassier et al., 1998). The development and main- on the links between fish health, stock assessment and man- tenance of the parasite and the immune reaction of host result agement of marine fisheries (Lloretet al., 2012). in a physiological cost for the host (Combes, 2001). Mullus barbatus barbatus (Mullidae) and Boops boops The presence of parasites can affect survival, physiology, (Sparidae) are economically important species of the Medi- behaviour and fitness of its host (Lester and Roubal, 1995; Trilles and Hipeau-Jacquotte, 1996, 2012; Barber et al., terranean. In Algeria, M. barbatus barbatus and B. boops are 2000; Combes, 2001; Östlund-Nilsson et al., 2005). Reduced caught by trawlers at around 2000 and 5000 tonnes per year, condition index and growth (Romestand and Trilles, 1979; respectively. No studies have been performed on the host/ Adlard and Lester, 1994; Johnson and Dick, 2001; Collyer parasite relationships and the effect of parasitism on fish and Stockwell, 2004), impaired reproduction and a reduced biology. The aim of this survey was to determine the para- lifespan (Adlard and Lester, 1994) have been observed, but sitofauna of the two fish species and to get insight into the other studies reported no effect of parasitism (Weinstein and effect of parasites on their biological performances. (1) Université A/Mira, Faculté des sciences, Département de biologie TCSN, Targa Ouzemour, Béjaïa (06000), Algérie. (2) Laboratoire de biochimie appliquée, Université A/Mira, Faculté des sciences, Béjaïa (06000), Algérie. (3) UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Équipe adaptation écophysiologique et ontogenèse, Université de Montpellier 2, CC. 092, Place E. Bataillon, 34095 Montpellier cedex 05, France. [[email protected]] (4) Laboratoire ressources halieutiques, IFREMER, Centre Manche-Mer du Nord, 150 quai Gambetta, BP 699, 62321 Boulogne/Mer, France. [[email protected]] (5) Université du littoral, Laboratoire d’océanologie et géosciences, UMR 8187, 62930 Wimereux, France. [[email protected]] * Corresponding author [[email protected]] Cybium 2013, 37(1-2): 59-66. al. specimens: the size/weight relationship (Wt relationship size/weight the specimens: eterswere compared between unparasitized and parasitized param biological Three host. the of performances biological effect on hosts) to analyse the impact of parasitism on the Parasites of two Algerian teleost fish teleost Algerian two of Parasites Boops boops Boops Figure 1. - tor K (K K tor fac condition Fulton’s the allometry), of coefficient b: stant, the talanffy(1938). Growth parameters were identified through Ber Von of model the using rate growth the and 3) to equal M Panfili 1992; (Jones, otolithometry by mined performed using the statistical software X software statistical the using performed 60 ware calculated according to to according calculated 70%.Prevalence, mean abundance and mean intensity were dissectingstereomicroscope. Parasites werefixed ethanol in muscle were examined for the presence of parasite using a fish. The body, fins, buccal cavity, gill cavities, gills, and cerate weight) were measured and sex determined for each evis and (total g in weight length), fork and length standard of coast (east Béjaïa sampled between 2007 and 2008 from the fishing porttotal of 664 of and sizes by the Chi-square test (χ test Chi-square the by sizes and asitologic indexes were compared according to the months by post-hocTukey tests) and covariance ( Parasitofauna and dynamics of infestation of dynamics and Parasitofauna classes were examined (Fig.examinedwere classes ahé ahé (1997). A The study was conducted in the east coast of coast east the in conducted was study The A S oftware Fishparm (Prager Fishparm oftware total of 1487 specimens belonging to different size MINI ll collected parasites were considered (cumulative et al et = N .,2012). T and (W)/ umber of examined specimens per size classes for A B. MATERIAL AND METHODS AND MATERIAL B 13. 31 version. 31 13. B Mullus barbatus barbatus barbatus Mullus boops L t b A , b: coefficient of allometry considered A nalysisof one-way and 823 lgeria). RESULTS M argolis argolis 1). Fifteen ectoparasiticspeciesFifteen 1). The length in cm (total length, (total cm in length The et al. et M. 2 et al. et ) using the statistical soft statistical the using ) barbatus barbatus , 1989). , from (1982) and Bush and (1982) AN LS AN = Béjaïa, OV T A a. A COV ge was deter was ge et al et T 2012. Par 2012. T A L A (followed t A b lgeria. A , a: con a: , ., 2002; lgeria. ) were were et A - - - - - - - - Table I. - Monthly variation of parasitologic indexes per parasite species. P%: prevalence; A: mean abundance; Im: mean intensity; M: mean; Min: minimum; Max: maximum; SD: standard deviation; n: number of examined fishes. Epidemiological Months Hosts/ Parasites species data January February March April May June July August September October November December n 90 105 66 98 80 30 30 30 30 30 44 31 Boops boops (M±SD) 17.3 ± 1.97 18.2 ± 3.8 21.6 ± 4.0 16.8 ± 2.5 17.2 ± 2.7 16.8 ± 1.2 15.8 ± 1.8 16.6 ± 4.4 18.4 ± 2.3 18.1 ± 2.7 17.8 ± 2.4 18.87 ± 2.95 P% 0 0.95 0 2.04 1.25 0 0 0 0 0 2.273 0 Cyclocotyla bellones A 0 0.019 0 0.02 0.025 0 0 0 0 0 0.023 0 Im (Min-Max) 0 2 (1-2) 0 1 2 (1-2) 0 0 0 0 0 1 0 P% 0 6.06 8.16 3.75 6.67 6.67 6.67 6.67 0 0 3.226 16.13 Microcotyle erythrini A 0 0.06 0.13 0.10 0.07 0.07 0,10 0.10 0 0 0.032 0.16 Im (Min-Max) 0 1 1.625 (1-4) 2.67 (1-4) 1 1 1.5 (1-2) 1.5 (1-2) 0 0 1 1 P% 0 0 0 0 0 0 0 0 0 0 0 3.23 Hatschekia A 0 0 0 0 0 0 0 0 0 0 0 0.06 pagellibogneravei Im (Min-Max) 0 0 0 0 0 0 0 0 0 0 0 2 Cybium P% 7.78 10.48 1.52 6.12 1.25 10.00 0 0 0 0 4.55 9.68 Naobranchia A 0.12 0.10 0.02 0,07 0.03 0.27 0 0 0 0 0.05 0.16 cygniformis Im (Min-Max) 1.57 (1-2) 1 1 1.17 (1-2) 2 2.67 (1-4) 0 0 0 0 1 1.67 (1-3) R AMDANE 2013, 37(1-2) 2013, P% 0 0 0 0 1.25 0 0 0 0 10 0 0 Lernaeolophus sultanus A 0 0 0 0 0.025 0 0 0 0 0.04 0 0 Im (Min-Max) 0 0 0 0 1 0 0 0 0 1 0 0 P% 2.22 0 0 0 0 0 0 0 0 0 0 0 ET Anilocra frontalis A 0.02 0 0 0 0 0 0 0 0 0 0 0 AL . Im (Min-Max) 1 0 0 0 0 0 0 0 0 0 0 0 Cybium R Table I.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us