DIFFERENTIAL EQUATIONS MTH401 Virtual University of Pakistan

DIFFERENTIAL EQUATIONS MTH401 Virtual University of Pakistan

DIFFERENTIAL EQUATIONS MTH401 Virtual University of Pakistan Knowledge beyond the boundaries Table of Contents 1 Introduction ................................................................................................................. 1 2 Fundamentals .............................................................................................................. 3 2.1 Elements of the Theory ........................................................................................ 3 2.2 Specific Examples of ODE’s ............................................................................... 3 2.3 The order of an equation ...................................................................................... 4 2.4 Ordinary Differential Equation ............................................................................ 4 2.5 Partial Differential Equation ................................................................................ 4 2.6 Results from ODE data ........................................................................................ 4 2.7 BVP Examples ..................................................................................................... 5 2.8 Properties of ODE’s ............................................................................................. 5 2.9 Superposition ........................................................................................................ 5 2.10 Explicit Solution ............................................................................................... 5 2.11 Implicit Solution ............................................................................................... 5 3 Separable Equations .................................................................................................... 6 3.1 Solution steps of Separable Equations ................................................................. 6 3.2 Exercise .............................................................................................................. 13 4 Homogeneous Differential Equations ....................................................................... 15 4.1 Method of Solution............................................................................................. 16 4.2 Equations reducible to homogenous form ......................................................... 17 4.2.1 Case 1 ......................................................................................................... 18 4.2.2 Case 2 ......................................................................................................... 18 4.3 Exercise .............................................................................................................. 20 5 Exact Differential Equations .................................................................................... 22 5.1 Method of Solution ............................................................................................ 22 5.2 Exercise .............................................................................................................. 26 6 Integrating Factor Technique .................................................................................... 28 6.1 Case 1 ................................................................................................................ 28 6.2 Case 2 ................................................................................................................ 29 6.3 Case 3 ................................................................................................................ 29 6.4 Case 4 ................................................................................................................. 29 6.5 Exercise .............................................................................................................. 36 7 First Order Linear Equations .................................................................................... 37 7.1 Method of solution ............................................................................................. 37 7.2 Exercise .............................................................................................................. 41 8 Bernoulli Equations .................................................................................................. 43 8.1 Method of solution ............................................................................................. 43 8.2 Exercise .............................................................................................................. 47 8.3 Substitutions ....................................................................................................... 48 8.4 Exercise .............................................................................................................. 52 9 Solved Problems ....................................................................................................... 53 10 Applications of First Order Differential Equations ............................................... 69 10.1 Orthogonal Trajectories ................................................................................. 69 10.2 Orthogonal curves .......................................................................................... 71 10.3 Orthogonal Trajectories (OT) ........................................................................ 71 10.3.1 Method of finding Orthogonal Trajectory .............................................. 72 10.4 Population Dynamics ..................................................................................... 77 11 Radioactive Decay ................................................................................................. 80 11.1 Newton's Law of Cooling ............................................................................... 82 11.2 Carbon Dating ................................................................................................ 84 12 Applications of Non-linear Equations ................................................................... 86 12.1 Logistic equation ............................................................................................ 86 12.1.1 Solution of the Logistic equation ................................................................ 86 12.1.2 Special Cases of Logistic Equation............................................................. 87 12.1.3 A Modification of LE.................................................................................. 88 12.2 Chemical reactions ......................................................................................... 89 12.3 Miscellaneous Applications ............................................................................ 92 13 Higher Order Linear Differential Equations ............................................................. 94 13.1 Preliminary theory .......................................................................................... 94 13.2 Initial -Value Problem .................................................................................... 94 13.2.1 Solution of IVP ........................................................................................... 95 13.3 Theorem ( Existence and Uniqueness of Solutions) ....................................... 95 13.4 Boundary-value problem (BVP) ..................................................................... 97 13.4.1 Solution of BVP .......................................................................................... 97 13.4.2 Possible Boundary Conditions .................................................................... 98 13.5 Linear Dependence ....................................................................................... 100 13.6 Linear Independence ..................................................................................... 100 13.6.1 Case of two functions................................................................................ 100 13.7 Wronskian ..................................................................................................... 102 13.8 Theorem (Criterion for Linearly Independent Functions) ............................ 102 13.9 Exercise ........................................................................................................ 104 14 Solutions of Higher Order Linear Equations .......................................................... 106 14.1 Preliminary Theory ....................................................................................... 106 14.2 Superposition Principle................................................................................. 106 14.3 Linear Independence of Solutions ................................................................ 109 14.4 Fundamental Set of Solutions ....................................................................... 109 14.4.1 Existence of a Fundamental Set ................................................................ 110 14.5 General Solution-Homogeneous Equations.................................................. 110 14.6 Non-Homogeneous Equations ...................................................................... 112 14.7 Complementary Function ............................................................................. 112 14.8 General Solution of Non-Homogeneous Equations ..................................... 113 14.9 Superposition Principle for Non-homogeneous Equations .......................... 114 14.10 Exercise .......................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    428 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us