Maximum-Likelihood Estimation: Basic Ideas

Maximum-Likelihood Estimation: Basic Ideas

Maximum-LikelihoodEstimation:BasicIdeas 1 I The methodofmaximumlikelihood providesestimatorsthathaveboth areasonableintuitivebasisandmanydesirablestatisticalproperties. I Themethodisverybroadlyapplicableandissimpletoapply. I Onceamaximum-likelihoodestimatorisderived,thegeneraltheory ofmaximum-likelihoodestimationprovidesstandarderrors,statistical tests,andotherresultsusefulforstatisticalinference. I Adisadvantageofthemethodisthatitfrequentlyrequiresstrong Maximum-Likelihood Estimation: assumptionsaboutthestructureofthedata. Basic Ideas c ° Maximum-LikelihoodEstimation:BasicIdeas 2 Maximum-LikelihoodEstimation:BasicIdeas 3 Thisfunctioniscalledthelikelihoodfunction: 1.AnExample (parameter data)= ( ) Wewanttoestimatetheprobability ofgettingaheadupon flippinga | | I = 7(1 )3 particularcoin. We flipthecoin‘independently’10times(i.e.,wesample =10 flips), I Theprobabilityfunctionandthelikelihoodfunctionaregivenbythe obtainingthefollowingresult: . sameequation,buttheprobabilityfunctionisafunctionofthedata Theprobabilityofobtainingthissequence—inadvanceofcollecting withthevalueoftheparameter fixed,whilethelikelihoodfunctionisa thedata—isafunctionoftheunknownparameter : functionoftheparameterwiththedata fixed. Pr(data parameter)=Pr( ) | | = (1 ) (1 )(1 ) = 7(1 )3 Butthedataforourparticularsampleare fixed:Wehavealready collectedthem. Theparameter alsohasafixedvalue,butthisvalueisunknown,and sowecanletitvaryinourimaginationbetween0and1,treatingthe probabilityoftheobserveddataasafunctionof . c c ° ° Maximum-LikelihoodEstimation:BasicIdeas 4 Maximum-LikelihoodEstimation:BasicIdeas 5 Herearesomerepresentativevaluesofthelikelihoodfordifferent ThecompletelikelihoodfunctionisgraphedinFigure1. valuesof : ( data)= 7(1 )3 Althougheachvalueof ( data) isanotionalprobability,thefunction | ( data) isnotaprobability| ordensityfunction—itdoesnotenclose 0.0 0.0 | .1 .0000000729 anareaof1. .2 .00000655 Theprobabilityofobtainingthesampleofdatathatwehaveinhand, .3 .0000750 ,issmallregardlessofthetruevalueof . .4 .000354 – Thisisusuallythecase: Anyspecific sampleresult—includingthe .5 .000977 onethatisrealized—willhavelowprobability. .6 .00179 Nevertheless,thelikelihoodcontainsusefulinformationaboutthe .7 .00222 unknownparameter . .8 .00168 Forexample, cannot be0or1,andis‘unlikely’tobecloseto0or1. .9 .000478 1.0 0.0 I Reversingthisreasoning,thevalueof thatismostsupportedbythe dataistheoneforwhichthelikelihoodislargest. Thisvalueisthe maximum-likelihoodestimate(MLE),denoted . Here, = 7,whichisthesampleproportionofheads,7/10. b c c ° ° b Maximum-LikelihoodEstimation:BasicIdeas 6 Maximum-LikelihoodEstimation:BasicIdeas 7 I Moregenerally,for independent flipsofthecoin,producingaparticular sequencethatincludes headsand tails, 20 00 data data . ( )=Pr( )= (1 ) 0 | | Wewantthevalueof thatmaximizes ( data),whichweoften 5 | 01 abbreviate ( ). 0 . 0 ta Itissimpler—andequivalent—to findthevalueof thatmaximizes a 0 d | 1 thelogofthelikelihood 00 . L 0 log ( )= log +( )log (1 ) 5 0 Differentiating log ( ) withrespectto produces 0 0 . 0 log ( ) 1 = +( ) ( 1) 0 1 000 . 0 = 0.00.20.40.60.81.0 1 Figure1.Likelihoodofobserving7headsand3tailsinaparticularse- quencefordifferentvaluesoftheprobabilityofobservingahead, . c c ° ° Maximum-LikelihoodEstimation:BasicIdeas 8 Maximum-LikelihoodEstimation:BasicIdeas 9 Settingthederivativeto0andsolvingproducestheMLEwhich,as 2.PropertiesofMaximum-Likelihood before,isthesampleproportion . Estimators Themaximum-likelihood estimator is = . Underverybroadconditions,maximum-likelihoodestimatorshavethe b followinggeneralproperties: I Maximum-likelihoodestimatorsareconsistent. I Theyareasymptoticallyunbiased,althoughtheymaybebiasedin finite samples. I Theyareasymptoticallyefficient—noasymptoticallyunbiasedestimator hasasmallerasymptoticvariance. I Theyareasymptoticallynormallydistributed. I Ifthereisasufficientstatisticforaparameter,thenthemaximum- likelihoodestimatoroftheparameterisafunctionofasufficientstatistic. Asufficientstatisticisastatisticthatexhaustsalloftheinformationin thesampleabouttheparameterofinterest. c c ° ° Maximum-LikelihoodEstimation:BasicIdeas 10 Maximum-LikelihoodEstimation:BasicIdeas 11 I TheasymptoticsamplingvarianceoftheMLE ofaparameter can I ( ) isthevalueofthelikelihoodfunctionattheMLE ,while ( ) is beobtainedfromthesecondderivativeofthelog-likelihood: thelikelihoodforthetrue(butgenerallyunknown)parameter . 1 ( )= b Tbhe loglikelihood-ratiostatistic b V 2log ( ) ( ) 2 2log =2[log ( ) log ( )] 2 ( ) b ¸ followsanasymptoticchisquaredistributionwithonedegreeof b Thedenominatorof ( ) iscalledthe expected or Fisherinformation freedom. b V 2 log ( ) – Because,bydefinition,theMLEmaximizesthelikelihoodforour ( ) particularsample,thevalueofthelikelihoodatthetrueparameter I b 2 ¸ value isgenerallysmallerthanattheMLE (unless,bygood fortune, and happentocoincide). Inpractice,wesubstitutetheMLE intotheequationfor ( ) to V b obtainan estimate oftheasymptoticsamplingvariance, [( ). V b b b b c c ° ° Maximum-LikelihoodEstimation:BasicIdeas 12 Maximum-LikelihoodEstimation:BasicIdeas 13 3.StatisticalInference:Wald, 3. ScoreTest: The‘score’istheslopeofthelog-likelihoodataparticular valueof ,thatis, ( ) log ( ) . Likelihood-Ratio,andScoreTests AttheMLE,thescoreis0: ( )=0.Itcanbeshownthatthe score statistic Thesepropertiesofmaximum-likelihoodestimatorsleaddirectlytothree ( 0) commonandgeneralproceduresfortestingthestatisticalhypothesis 0 b ( 0) : = . I 0 0 isasymptoticallydistributedas (0 1) under 0. p 1. WaldTest: RelyingontheasymptoticnormalityoftheMLE ,we I Unlessthelog-likelihoodisquadratic,thethreeteststatisticscan calculatetheteststatistic producesomewhatdifferentresultsinspecificsamples,althoughthe 0 0 b threetestsareasymptoticallyequivalent. [( ) b V I Incertaincontexts,thescoretesthasthepracticaladvantageofnot whichisasymptoticallydistributedqas (0 1) under 0. requiringthecomputationoftheMLE (because 0 dependsonlyon 2. Likelihood-RatioTest: Employingthelobglikelihoodratio,theteststatistic thenullvalue 0,whichisspecifiedin 0). 2 ( 0) TheWaldandlikelihood-ratiotestscanb be‘turnedaround’toproduce 0 2log =2[log ( ) log ( 0)] I ( ) confidenceintervalsfor . 2 isasymptoticallydistributedas 1 under 0. b c b c ° ° Maximum-LikelihoodEstimation:BasicIdeas 14 Maximum-LikelihoodEstimation:BasicIdeas 15 I Figure2comparesthethreeteststatistics. I Maximum-likelihoodestimationandtheWald,likelihood-ratio,andscore Likelihood-ratio test tests,extendstraightforwardlytosimultaneousestimationofseveral logeL parameters. Score test Wald test ^ 0 Figure2.Likelihood-ratio,Wald,andscoretests. c c ° °.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us