Glossary of Symbols

Glossary of Symbols

Glossary of Symbols a1 ≡ a2(mod b) a1 congruent to a2, modulo b; a1 − a2 divisible by b C the field of complex number d(n) the number of (positive) divisors of n; σo(n) d|nddivides n; n is a multiple of d; there is an integer q such that dq = n d | nddoes not divide n e base of natural logarithms; 2.718281828459045 ... exp{} exponential function 2n Fn Fermat numbers: 2 +1 Or Fibonacci numbers f(x)=0(g(x)) f(x)/g(x) → 0asx →∞ f(x)=0(g(x)) there is a constant c such that |f(x)| <cg(x) i square root of −1; i2 = −1 ln x natural logarithm of x (m, n) GCD (greatest common divisor) of m and n; highest common factor of m and n [m, n] LCM (least common multiple) of m and n. Also, the block of consecutive integers, m, m +1,...n p Mp Mersenne numbers: 2 − 1 Glossary of Symbols 341 n! factorial n; 1 × 2 × 3 × ...× n n k n choose k; the binomial coefficient n!/k!(n − k)! p or (p/q) Legendre symbol, also fraction q panpa divides n, but pa+1 does not divide n pn the nth prime, p1 =2, p2 =3,p3 =5,... Q the field of rational numbers rk(n) least number of numbers not exceeding n, which must contain a k-term arithmetic progression x Gauss bracket or floor of x; greatest integer not greater than x x ceiling of x; last integer not less than x xn least positive (or nonnegative) remainder of x modulo n Z the ring of integers Zn the ring of integers, 0, 1, 2,...,n− 1 (modulo n) γ Euler’s constant; 0.577215664901532 ... π ratio of circumference of circle to diameter; 3.141592653589793 ... π(x) number of primes not exceeding x, also primitive polynomial π(x; a, b) number of primes not exceeding x and congruent to a, modulo b product 342 Glossary of Symbols σ(n) sum of divisors of n σk(n) sum of kth powers of divisors of n sum φ(n) Euler’s totient function; number of positive integers not exceeding n and prime to n ω complex cube root of 1, ω3 =1,ω =1, ω2 + ω +1=0 ω(n) number of distinct prime factors of n Ω(n) number of prime factors of n, counting repetitions References Chapter 1 1.1 T. M. Apostol: Introduction to Analytic Number Theory (Springer, Berlin, Heidelberg, New York 1976) 1.2 I. Asimov: Asimov on Numbers (Doubleday, Garden City, NY, 1977) 1.3 A. O. L. Atkin, B. J. Birch (eds.): Computers in Number Theory (Academic, London 1971) 1.4 E. R. Berlekamp, J. H. Conway, R. K. Guy: Winning Ways (Academic, Lon- don 1981) 1.5 W. Kaufmann-B¨uhler: Gauss. A Biographical Study (Springer, Berlin, Hei- delberg, New York 1981) 1.6 P. J. Davis: The Lore of Large Numbers (Random House, New York 1961) 1.7 L. E. Dickson: History of the Theory of Numbers, Vols. 1–3 (Chelsea, New York 1952) 1.8 U. Dudley: Elementary Number Theory (Freeman, San Francisco 1969) 1.9 C. F. Gauss: Disquisitiones Arithmeticae [English transl. by A. A. Clarke, Yale University Press, New Haven 1966] 1.10 W. Gellert, H. K¨ustner,M. Hellwich, H. K¨astner(eds.) The VNR Concise Encyclopedia of Mathematics (Van Nostrand Reinhold, New York 1977) 1.11 R. K. Guy: Unsolved Problems in Intuitive Mathematics, Vol. I, Number The- ory (Springer, Berlin, Heidelberg, New York 1981) 1.12 H. Halberstam, C. Hooley (eds.): Progress in Analytic Number Theory, Vol. I (Academic, London 1981) 1.13 G. H. Hardy: A Mathematician’s Apology (Cambridge University Press, Cam- bridge 1967) 1.14 G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, 4th ed. (Clarendon, Oxford 1960) 1.15 L. H. Hua: Introduction to Number Theory (Springer, Berlin, Heidelberg, New York 1982) 1.16 K.-H. Indlekofer: Zahlentheorie, Uni-Taschenb¨ucher 688 (Birkh¨auser,Basel 1978) 1.17 K. Ireland, M. Rosen: A Classical Introduction to Modern Number Theory (Springer, New York 1990) 1.18 H. Minkowski: Diophantische Approximationen (Teubner, Leipzig 1907; re- printed by Physica, W¨urzburg1961) 1.19 T. Nagell: Introduction to Number Theory (Wiley, New York 1951) 1.20 C. S. Ogilvy: Tomorrow’s Math (Oxford University Press, Oxford 1962) 1.21 O. Ore: Number Theory and Its History (McGraw-Hill, New York 1948) 1.22 H. Rademacher: Lectures on Elementary Number Theory (Blaisdell, New York 1964) 344 References 1.23 H. Rademacher, O. Toeplitz: The Equipment of Mathematics (Princeton Uni- versity Press, Princeton 1957) 1.24 A. Scholz, B. Schoenberg: Einf¨uhrung in die Zahlentheorie, Sammlung G¨oschen 5131 (Walter de Gruyter, Berlin 1973) 1.25 C. E. Shannon: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949) 1.26 W. Sierpi´nski: 250 Problems in Elementary Number Theory (American Else- vier, New York 1970) 1.27 J. V. Uspensky, M. A. Heaslet: Elementary Number Theory (McGraw-Hill, New York 1939) 1.28 D. J. Winter: The Structure of Fields, Graduate Texts in Mathematics, Vol. 16 (Springer, Berlin, Heidelberg, New York 1974) Chapter 2 2.1 L. H. Hua: Introduction to Number Theory (Springer, Berlin, Heidelberg, New York 1982) 2.2 R. Plomp, G. F. Smoorenburg: Frequency Analysis and Periodicity Detection in Hearing (A. W. Sijthoff, Leiden 1970) Chapter 3 3.1 C. Pomerance: The search for prime numbers. Sci. Am. 247, No. 6, 136–147 (1982) 3.2 W. H. Mills: A prime representing function. Bull. Am. Math. Soc. 53, 604 (1947) 3.3 T. Nagell: Introduction to Number Theory (Wiley, New York 1951) 3.4 D. Slowinski: Searching for the 27th Mersenne prime. J. Recreational Math. 11, 258–261 (1978–79) 3.5 D. B. Gillies: Three new Mersenne primes and a statistical theory. Math. Comp. 18, 93–97 (1963) 3.6 G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, 5th ed., Sect. 2.5 (Clarendon, Oxford 1984) 3.7 W. Kaufmann-B¨uhler: Gauss. A Biographical Study (Springer, Berlin, Hei- delberg, New York 1981) 3.8 C. Chant, J. Fauvel (eds.): Science and Belief (Longman, Essex 1981) Chapter 4 4.1 P. Erd¨os,M. Kac: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1945) 4.2 P. D. T. A. Elliot: Probabilistic Number Theory, Vols. 1–2 (Springer, Berlin, Heidelberg, New York 1980) 4.3 D. Zagier: “Die ersten 50 Millionen Primzahlen” in Lebendige Zahlen, ed. by F. Hirzebruch (Birkh¨auser,Basel 1981) 4.4 G. Kolata: Does G¨odel’stheorem matter to mathematics? Science 218, 779– 780 (1982) 4.5 P. Erd¨os:On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35, 374–384 (1949) 4.6 H. M. Edwards: Riemann’s Zeta Function (Academic Press, New York 1974) References 345 4.7 Z. F¨uredi,J. Komlos: The eigenvalues of random symmetric matrices. Com- binatorica 1, 233–241 (1981) 4.8 M. R. Schroeder: A simple function and its Fourier transform. Math. Intelli- gencer 4, 158–161 (1982) 4.9 U. Dudley: Elementary Number Theory (Freeman, San Francisco 1969) 4.10 G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, 5th ed. Sect. 22.3 (Clarendon, Oxford 1984) 4.11 M. R. Schroeder: Speech Communication 1, 9 (1982) 4.12 I. M. Vinogradov: An Introduction to the Theory of Numbers (Pergamon, New York 1955) Chapter 5 5.1 C. D. Olds: Continued Fractions (Random House, New York 1963) 5.2 H. S. Wall: Analytic Theory of Continued Fractions (Van Nostrand, Princeton 1948) 5.3 A. N. Khovanskii: The Application of Continued Fractions and Their Gen- eralizations to Problems in Approximation Theory (Noordhoff, Groningen 1963) 5.4 A. Y. Khinchin: Continued Fractions (University of Chicago Press, Chicago 1964) 5.5 F. D. M. Haddani: Phys. Rev. Lett. 51, 605–607 (1983) 5.6 K. Ikeda, M. Mitsumo: Phys. Rev. Lett. 53 1340–1343 (1984) 5.7 C. J. Bouwkamp, A. J. Duijvestijn, P. Medema: Tables relating to simple squared rectangles (Dept. of Mathematics and Mechanics, Technische Hoge- school, Eindhoven 1960) 5.8 V. E. Hoggatt: Fibonacci and Lucas Numbers (Houghton Mifflin, Boston 1969) 5.9 P. H. Richter, R. Schranner: Leaf arrangment. Naturwissenschaften 65, 319– 327 (1978) 5.10 M. Eigen: “Goethe und das Gestaltproblem in der modernen Biologie,” in H. R¨ossner(ed.): R¨uckblick in die Zukunft (Severin und Siedler, Berlin 1981) 5.11 O. Ore: Number Theory and Its History (McGraw-Hill, New York 1948) 5.12 A. Koenig (personal communication) 5.13 W. Gellert, H. K¨ustner,M. Hellwich, H. K¨astner(eds.): The VNR Concise Encyclopedia of Mathematics (Van Nostrand Reinhold, New York 1977) 5.14 L. K. Hua, Y. Wang: Applications of Number Theory to Numerical Analysis IX (Springer, Berlin, Heidelberg, New York 1981) 5.15 J. C. Lagarias, A. M. Odlyzko: Solving “low-density” subset sum problems. J. Association of Computing Machinery 32, 229–246 (1985) 5.16 R. L. Graham (personal communication) 5.17 R. K. Guy: Unsolved Problems in Intuitive Mathematics, Vol. I, Number The- ory (Springer, Berlin, Heidelberg, New York 1981) 5.18 M. Gardner: Mathematical games. Sci. Am. 239, No. 4, 22–26 (1978) 5.19 R. L. Graham: A theorem on partitions. J. Austral. Math. 4, 435–441 (1963) 5.20 E. Landau: Elementary Number Theory (Chelsea, New York 1958) 5.21 E.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us