Lizard Inspired Tail for the Dynamic Stabilization of Robotic Bodies

Lizard Inspired Tail for the Dynamic Stabilization of Robotic Bodies

Lizard Inspired Tail for the Dynamic Stabilization of Robotic Bodies A Major Qualify Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science In Mechanical Engineering By Michael Berlied _______________ Approved by: Stephen Nestinger ______________ Date Completed: April 27, 2012 ABSTRACT The purpose of this project was to determine the feasibility of a lizard inspired tail for the dynamic stabilization of robotic bodies during aerial or aggressive maneuvers. A mathematical model was created to determine the effects of various tail designs. A physical model of the tail design was fabricated and used to determine feasibility of the design and evaluate the mathematical model. ii Table of Contents Abstract ........................................................................................................................................... ii Table of Figures .............................................................................................................................. v 1.0 Introduction ............................................................................................................................... 1 2.0 Methodology ............................................................................................................................. 2 3.0 Literature Review...................................................................................................................... 3 3.1 Lizard Physiology and Tail Control .................................................................................... 3 3.2 Tailbot Robotic Tail ............................................................................................................ 6 3.4 Articulated Robotic Limbs .................................................................................................. 9 3.4.1 Festo Bionic Handling Assistant .............................................................................. 10 3.6 Summary ........................................................................................................................... 12 4.0 Lizard Inspired articulated design synthesis ........................................................................... 13 4.1 Assumptions and System Limitations ............................................................................... 13 4.2 Control System for MDOF Manipulation ......................................................................... 13 4.2.1 Serial Manipulator ................................................................................................... 14 4.2.2 Actuation Control..................................................................................................... 15 4.2.3 Implemented Design: Modified Actuation Control ................................................. 15 4.3 Mass Distribution .............................................................................................................. 16 4.4 Ligament Equivalent for Segment Connections ............................................................... 16 4.4.1 Tension Springs ....................................................................................................... 18 4.4.2 Compression Springs ............................................................................................... 18 4.4.3 Flexible Rods ........................................................................................................... 18 4.4.4 Implemented Ligament Connection ......................................................................... 19 4.5 Segment Design ................................................................................................................ 19 4.6 Summary ........................................................................................................................... 20 5.0 Modeling and Simulation ........................................................................................................ 21 5.1 Vibration Analysis ............................................................................................................ 21 iii 5.1.1 Free Body Diagrams ................................................................................................ 22 5.1.2 Assumptions ............................................................................................................. 23 5.1.3 Initial Value Problem ............................................................................................... 23 5.1.4 Operating Deflection Shapes and Modal Shapes ..................................................... 24 5.1.5 Vibrational Analysis Summary ................................................................................ 30 5.2 MDOF Tail Modeling ....................................................................................................... 30 5.2.1 Vector Rotation ........................................................................................................ 31 6.0 Prototype Design ..................................................................................................................... 33 6.1 First Prototype ................................................................................................................... 33 6.1.1 Design Review ......................................................................................................... 34 6.1.2 Spring Location Iteration ......................................................................................... 34 6.2 Second Prototype .............................................................................................................. 35 6.2.1 Design Review ......................................................................................................... 35 7.0 Project Accomplishments and Discussions ............................................................................ 38 8.0 Future Work ............................................................................................................................ 39 8.1 Physical Dynamics Model: Mathematical ........................................................................ 39 8.2 Prototype Model................................................................................................................ 39 9.0 Conclusions ............................................................................................................................. 41 Bibliography ................................................................................................................................. 42 Appendix 1: MDOF Mathematical Modeling............................................................................... 43 Appendix 1.1: Modal Analysis Matlab Code ............................................................................... 43 Appendix 1.2: Modal Flow Chart and Equation ........................................................................... 46 Appendix 1.3: Vector Rotation Matlab Code ............................................................................... 49 Appendix 2: Double Pendulum Modeling .................................................................................... 52 Appendix 3: Quad Pendulum Modeling and Inertia Control ........................................................ 53 iv TABLE OF FIGURES Figure 1: Lizard Body Styles [7] .................................................................................................... 3 Figure 2: UC Berkeley Lizard Jumping Study [1] .......................................................................... 4 Figure 3: Sensitivity of Body Rotation to a Perturbation in a Lizard [1] ....................................... 6 Figure 4: Robot Tail Effectiveness Testing and Correlation Data [1] ............................................ 7 Figure 5: Tailbot nose-down perturbation based on tail manipulation. .......................................... 7 Figure 6: Tail Effectiveness for Body Perturbations [1] ................................................................. 8 Figure 7: Bio-mechatronic Robotic Examples of Festo [2] .......................................................... 10 Figure 8: Festo’s Bionic Handling Assistant [2] .......................................................................... 11 Figure 9: Bionic Handling Assistant – Gripper [2] ....................................................................... 11 Figure 10: Serial Manipulator Example ........................................................................................ 14 Figure 11: Actuation Controlled Robot [3] ................................................................................... 15 Figure 12: Mass Distribution of Tail Design ................................................................................ 16 Figure 13: Tension Spring Attachment Example.......................................................................... 17 Figure 14: Quad Tension Spring Example.................................................................................... 17 Figure 15: Compression Spring Example 1 .................................................................................. 17 Figure 16: Compression Spring Example 2 .................................................................................. 17 Figure 17: Mass Section Implemented Design ............................................................................. 19 Figure 18: Free Body Diagrams and Equations

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    59 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us