Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte for the MAGIC collaboration • Imaging air shower Cherenkov technique – The MAGIC telescope • Observation of the AGN 3c279 • Observation of Neutron Stars with MAGIC • The Crab nebula and Pulsar (young pulsar) [astro-ph/0705.3244] • PSR B1951+32 (middle aged pulsar) [astro-ph/0702077] • PSR B1957+20 (millisecond pulsar) • LS I 61+303 [Science 2006] • Where to go next? A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 2 The non-thermal universe in VHE gamma-rays SNRs Pulsars Micro quasars AGNs and PWN X-ray binaries GRBs Origin of Space-time cosmic rays Dark matter & relativity Cosmology A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 3 VHE gamma-ray sources status ICRC 2007 71 known sources detections from ground Rowell A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 4 Imaging Air Cherenkov Technique Cherenkov light image of particle shower Gamma in telescope camera ray Particle ~ 10 km • fast light flash (nanoseconds) shower • 100 photons per m² (1 TeV Gamma Ray) t h g o li ~ 1 v o k n e r e h C reconstruct: ~ 120 m arrival direction, energy reject hadron background A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 5 CurrentCurrent generationgeneration CherenkovCherenkov telescopestelescopes MAGIC Veritas MAGIC (Germany, Spain, Italy) VERITAS 1 telescope 17 meters Ø (USA & England) 4 (7) telescopes Montosa 10 meters Ø Canyon, Roque de Arizona los Muchachos, Canary Islands CANGAROO III Cangaroo(Australia III & Japan) 4 telescopes 10 meters Ø H.E.S.S. Windhoek, HESS Namibia (Germany & France) Woomera, 4 telescopes Australia 12 meters Ø A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 6 The MAGIC site A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 7 A recent view of MAGIC MAGIC II MAGIC I counting house picture by R.Wagner A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 8 Current Status of MAGIC First telescope in regular observation mode since fall 2004 MAGIC-I – 236 m2 mirror area (17m Ø) – Fast repositioning (40 sec) for GRB follow-up observations – Upgrade: 2GSamples/s FADCs – Trigger threshold: ~ 50 GeV – Sensitivity: 2 % Crab (5σ,50h) for E>200GeV – Using timing parameters after installation of new 2GSamples/s FADC: => Sensitivity improved to 1.5% Crab A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 9 Central Pixel for Optical Measurements • Modified central pixel for optical measurements • simultaneous with Gamma-ray observations view from back Crab pulsar in optical by MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 10 Event Parameterization gamma candidate hadron hadron muon ring event parameterization with principal components commonly known as Hillas parameters A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 11 Background Rejection gamma shower Main background: - cosmic ray (hadron) showers ->103 times more numerous than γ-ray showers - reject based on shower shape (hadrons are broader) hadron shower (background) A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 12 Gamma / Hadron Separation differences between gammas and background events background compressed into one variable: HADRONNESS determined with the method gamma rays of Random Forests Breimann 2001 analysis for Sizes < 200 phe is difficult A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 13 Extragalactic Sources: Active Galactic Nuclei Narrow Jet Line Region Broad Black Line Region Hole Obscuring Accretion Torus Disk Urry & Padovani (1995) blazar A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 14 Attenuation of VHE γ-rays Cherenkov EBL Telescope BL-Lac object + − 2 HEγ γ EBL→e e Eγγ ≈1.8*( 2mec ) 2.7K • Absorption leads to cutoff in AGN spectrum • Measurement of spectral features allows to constrain EBL Models Red shifted stellar light Red shifted dust light A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 15 known extragalactic VHE-sources (19) Source Redshift Sp. Types Discovery Observation M 87 0.004 2.9 FR-I HEGRA HESS Mkn 421 0.031 2.2 HBL Whipple many Mkn 501 0.034 2.4 HBL Whipple many 1ES 2344+514 0.044 2.9 HBL Whipple MAGIC Mkn 180 0.045 3.3 HBL MAGIC 1ES 1959+650 0.047 2.4 HBL 7TA many PKS 0548-322 0.069 HBL HESS BL Lac 0.069 3.6 LBL MAGIC PKS 2005-489 0.071 4.0 HBL HESS PKS 2155-304 0.116 3.3 HBL Durham many 1ES 1426+428 0.129 3.3 HBL Whipple HEGRA 1ES 0229+200 0.139 HBL HESS H 2356-309 0.165 3.1 HBL HESS 1ES 1218+304 0.182 3.0 HBL MAGIC VERITAS 1ES 1101-232 0.186 2.9 HBL HESS 1ES 0347-121 0.188 HBL HESS 1ES 1011+496 0.212 4.0 HBL MAGIC 3C 279 0.538 FSRQ MAGIC PG 1553 ? 4.0 HBL HESS/MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 16 Detection of 3C279 Sky map around 3C279 80-220 GeV Preliminary Preliminary Preliminary E> 220 GeV Preliminary big jump into the deep universe may deliver stringent constraint on EBL and acceleration models Preliminary A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 17 Pulsars and & pulsar nebulae Exploring Extreme electrodynamics & GR Relativistic winds Acceleration in shocks The Pulsar Wind Nebula Complex on the example of the Crab massive object in center: magnetized, spinning neutron star (pulsar) energy carried away by electromagnetic radiation and particles (~1038 erg/s) particle acceleration in: 1. light cylinder 2. shock front from Aharonian et al A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 19 The Crab Nebula resolved in X-Rays rich and dynamic structure in X-rays: •wisps •knots •jets 7 still images of Chandra observations taken NASA/CXC/ASU/J.Hester et al. between November 2000 and April 2001. A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 20 The Crab-PWN: Broadband Emission synchrotron emission Pulsar • little known at energies around the peak of the IC-emission morphology? variability? Nebula spectrum? Synchrotron IC pulsar? IC-emission Aharonian & Atoyan (1998) studied with MAGIC at energies >60 GeV A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 21 Crab Nebula: Spectral Energy Distribution • good agreement with other Cherenkov telescopes above 400GeV • spectrum well described within SSC-framework • first time determination of the IC-peak at 77±47statGeV A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 22 Crab Nebula: Morphology • emission region compatible with point-like source - emission region <2’ (1σ radius) • center of gravity coincides with the position of the Crab pulsar (black dot) - systematic uncertainty in position ~1’ X-ray, optical composite picture A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 23 Crab Nebula: Variability no variability (>200 GeV) on time scales of: • minutes (<20% Crab-flux) • days (<10% Crab-flux) • months (<5% Crab-flux) 10 min binning A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 24 The Crab Pulsar Wind Nebula Complex turning to the central object the pulsar from Aharonian et al A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 25 Gamma-Ray Emission from Pulsars magnetic dipole moment spin axis • three sites favored for particle acceleration • emission appears pulsed; lighthouse model • complex electrodynamics; challenging for theory • no pulsar detected above ~100 GeV Æspectral cutoff; Harding challenging for experiment A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 26 Crab Pulsar in Gamma-Rays events with Size <300 photoelectrons significance of pulsed emission: no prior assumption about pulse profile: 1.2σ guided by EGRET >100 MeV profile: 2.9σ Fierro, 1998 shaded: regions of pulsed emission defined by EGRET measurements above 100 MeV (P1, P2) A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 27 Upper limit on cutoff energy 1. assume EGRET spectrum with exponential cutoff 2. convolute spectrum with MAGIC response 3. calculate number of expected pulsed excess events 4. compare with upper limit on pulsed excess events MAGIC response after cuts (Size <300phe) 5. reiterate with different cutoff energy until match exponential cutoff <30 GeV super-exponential cutoff <60 GeV A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 28 Crab Pulsar II • no detection/hints of pulsed emission in differential bins of energy • upper limits compatible with results from other experiments A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 29 PSR B1951+32 / CTB 80 A different pulsar than Crab • 100 times older (~105 years) optical • 10 times lower surface magnetic field (~5x1011 G) • moves 2 times faster through ISM (240km/s) • 100 times lower spin down luminosity (~1036 erg/s) pulsar detected by EGRET up to 20 GeV at 10 GeV similar luminosity as the Crab radio pulsar radio and synchrotron nebula CTB80 + VHE gamma-ray predictions Æ a good candidate to observe with MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 30 In the surroundings of PSR B1951+32 No displaced gamma ray emission level of few % Crab (point source 0.1° RMS radius) reduced sensitivity for more extended emission region A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 31 PSR B1951+32 / CTB 80 • can exclude flux level predicted by Bednarek & Bartosik (2003) • magnetic field larger than assumed Æ pulsar wind not particle dominated? • model calculations do not take pulsar motion into account Æ emission smeared out over a larger volume? A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 32 PSR B1951+32 Pulsar special thanks to Andrew Lyne et al.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages76 Page
-
File Size-