
Syntax and Semantics of FuzzyDL Fernando Bobillo and Umberto Straccia 1. Fuzzy operators. ; ⊕; and ) denote a t-norm, t-conorm, negation function and implication function respectively; α; β 2 [0; 1]. Lukasiewicz negation L α 1 − α G¨odelt-norm α ⊗G β minfα; βg Lukasiewicz t-norm α ⊗L β maxfα + β − 1; 0g G¨odelt-conorm α ⊕G β maxfα; βg Lukasiewicz t-conorm α ⊕L β minfα + β; 1g 1; if α ≤ β G¨odelimplication α ) β G β; if α > β Lukasiewicz implication α )L β minf1; 1 − α + βg Kleene-Dienes implication α )KD β maxf1 − α; βg Zadeh'set inclusion α )Z β 1 iff α ≤ β, 0 otherwise The reasoner can accept three different semantics, which are used to interpret ; ⊕; and ). • Zadeh semantics:Lukasiewicz negation, G¨odelt-norm, G¨odelt-conorm and Kleene-Dienes implication (except in GCIs, where we have that the degree of membership to the subsumed concept should be less or equal than the degree of membership to the subsumer concept). This semantics is included for compatibility with earlier papers about fuzzy description logics. • Lukasiewicz semantics:Lukasiewicz negation,Lukasiewicz t-norm,Lukasiewicz t-conorm andLukasiewicz implication. • Classical semantics: classical (crisp) conjunction, disjunction, negation and implication. Syntax to define the semantics of the knowledge base: (define-fuzzy-logic [lukasiewicz | zadeh | classical] ) 2. Concrete Fuzzy Concepts. Concrete Fuzzy Concepts (CFCs) define a name for a fuzzy set with an explicit fuzzy membership function (we assume a ≤ b ≤ c ≤ d). (a) (b) (c) (d) (e) (f) Figure 1: (a) Crisp value; (b) L-function; (c) R-function; (d) (b) Triangular function; (e) Trapezoidal function; (f) Linear hedge 1 (define-fuzzy-concept CFC crisp(k1,k2,a,b)) crisp interval (Figure ?? (a)) (define-fuzzy-concept CFC left-shoulder(k1,k2,a,b)) left-shoulder function (Figure ?? (b)) (define-fuzzy-concept CFC right-shoulder(k1,k2,a,b)) right-shoulder function (Figure ?? (c)) (define-fuzzy-number CFC triangular(k1,k2,a,b,c)) triangular function (Figure ?? (d)) (define-fuzzy-concept CFC trapezoidal(k1,k2,a,b,c,d)) trapezoidal function (Figure ?? (e)) 3. Fuzzy Numbers. Firstly, if fuzzy numbers are used, one has to define the range [k1; k2] ⊆ R as follows: (define-fuzzy-number-range k1 k2) Let fi be a fuzzy number (ai; bi; ci)(a ≤ b ≤ c), and n 2 R. Valid fuzzy number expressions (see Figure ?? (d)) are: name fuzzy number definition name (a, b, c) fuzzy number (a; b; c) n real number (n; n; n) Pn Pn Pn (f+ f1 f2 . fn) addition ( i=1 ai; i=1 bi; i=1 ci) (f- f1 f2) substraction (a1 − c2; b1 − b2; c1 − a2) Qn Qn Qn (f* f1 f2 . fn) product ( i=1 ai; i=1 bi; i=1 ci) (f/ f1 f2) division (a1=c2; b1=b2; c1=a2) Fuzzy numbers can be named as: (define-fuzzy-number name fuzzyNumberExpression) 4. Truth constants. Truth constants can be defined as follows (and later on, they can be used as the lower bound of a fuzzy axiom): (define-truth-constant constant n), where n is a rational number in [0; 1]. 5. Concept modifiers. Modifiers change the membership function of a fuzzy concept. (define-modifier CM linear-modifier(b)) linear hedge with b > 0 (Figure ?? (f)) (define-modifier CM triangular-modifier(a,b,c)) triangular function (Figure ?? (d)) 6. Features. Features are functional datatype attributes. (functional F) Firstly, the feature is defined. Then we set the range (range F *integer* k1 k2) The range is an integer number in [k1; k2] (range F *real* k1 k2) The range is a rational number in [k1; k2] (range F *string*) The range is a string 7. Datatype restrictions. (>= var F) at least datatype restriction sup [F I (x; b) ⊗ (b ≥ var)] b2∆D (>= F f(F ;:::;F )) at least datatype restriction sup [F I (x; b) ⊗ (b ≥ f(F ;:::;F )I )] 1 n b2∆D 1 n I 0 I 0 (>= FN F) at least datatype restriction sup 0 [F (x; b) ⊗ (b ≥ b ) ⊗ FN (b ) b;b 2∆D (<= var F) at most datatype restriction sup [F I (x; b) ⊗ (b ≤ var)] b2∆D (<= F f(F ;:::;F )) at most datatype restriction sup [F I (x; b) ⊗ (b ≤ f(F ;:::;F )I )] 1 n b2∆D 1 n I 0 I 0 (<= FN F) at most datatype restriction sup 0 [F (x; b) ⊗ (b ≤ b ) ⊗ FN (b ) b;b 2∆D (= var F) exact datatype restriction sup [F I (x; b) ⊗ (b = var)] b2∆D (= F f(F ;:::;F )) exact datatype restriction sup [F I (x; b) ⊗ (b = f(F ;:::;F )I )] 1 n b2∆D 1 n (= FN F) exact datatype restriction sup [F I (x; b) ⊗ FN I (b) b2∆D 2 In datatype restrictions, the variable var may be replaced with a value (an integer, a real, or a string, depending on the range of the feature F ). Furthermore, is defined as follows: f(F1;:::;Fn) ! F real (nF ) j (n ∗ F ) (F1 − F2) (F1 + F2 + ::: + Fn) 8. Concept expressions. *top* top concept 1 bottom* bottom concept 0 A atomic concept AI (x) I I (and C1 C2) concept conjunction C1 (x) ⊗ C2 (x) I I (g-and C1 C2) G¨odelconcept conjunction C1 (x) ⊗G C2 (x) I I (l-and C1 C2)Lukasiewicz concept conjunction C1 (x) ⊗L C2 (x) I I (or C1 C2) concept disjunction C1 (x) ⊕ C2 (x) I I (g-or C1 C2) G¨odelconcept disjunction C1 (x) ⊕G C2 (x) I I (l-or C1 C2)Lukasiewicz concept disjunction C1 (x) ⊕L C2 (x) I (not C1) concept negation L C1 (x) I I (implies C1 C2) concept implication C1 (x) ) C2 (x) I I (g-implies C1 C2) G¨odel concept implication C1 (x) )G C2 (x) I I (l-implies C1 C2)Lukasiewicz concept implication C1 (x) )L C2 (x) I I (kd-implies C1 C2) Kleene-Dienes concept implication C1 (x) )KD C2 (x) I I (all R C1) universal role restriction infy2∆I R (x; y) ) C1 (y) I I (some R C1) existential role restriction supy2∆I R (x; y) ⊗ C1 (y) I I (ua s C1) upper approximation supy2∆I s (x; y) ⊗ C (y) I I (la s C1) lower approximation infy2∆I s (x; y) ) C (y) I I I (tua s C1) tight upper approximation infz2X fsi (x; z) ) supy2∆I fsi (y; z) ⊗ C (y)gg I I I (lua s C1) loose upper approximation supz2X fsi (x; z) ⊗ supy2∆I fsi (y; z) ⊗ C (y)gg I I I (tla s C1) tight lower approximation infz2X fsi (x; z) ) infy2∆I fsi (y; z) ) C (y)gg I I I (lla s C1) loose lower approximation supz2X fsi (x; z) ⊗ infy2∆I fsi (y; z) ) C (y)gg (self S) local reflexivity concept SI (x)(x; x) I (CM C1) modifier applied to concept fm(C1 (x)) (CFC) concrete fuzzy concept CFCI (x) (FN) fuzzy number FN I (x) I I (w-sum (n1 C1) . (nk Ck)) weighted sum n1C1 (x) + ::: + nkCk (x) I (n C1) weighted concept nC1 (x) C I (x); if C I (x) ≥ w ([>= var ] C1) threshold concept 1 1 0; otherwise C I (x); if C I (x) ≤ w ([<= var ] C1) threshold concept 1 1 0; otherwise (DR) datatype restriction DRI (x) Pk where n1; : : : ; nk 2 [0; 1] with i=1 ni ≤ 1, and w is a variable or a real number in [0; 1]. Fuzzy numbers can only appear in existential, universal and datatype restrictions. Similarly, in threshold concepts var may be replaced with w. Fuzzy relations s should be previously defined as fuzzy similarity relation or a fuzzy equivalence relation as (define-fuzzy-similarity s) or (define-fuzzy-equivalence s), respectively. Important note: The reasoner restricts the calculus to witnessed models. 3 9. Axioms. I I (instance a C1 [d]) concept assertion C1 (a ) ≥ d (related a b R [d]) role assertion RI (aI ; bI ) ≥ d I I (implies C1 C2 [d]) GCI infx2∆I C1 (x) ) C2 (x) ≥ d I I (g-implies C1 C2 [d]) G¨odelGCI infx2∆I C1 (x) )G C2 (x) ≥ d I I (kd-implies C1 C2 [d]) Kleene-Dienes GCI infx2∆I C1 (x) )KD C2 (x) ≥ d I I (l-implies C1 C2 [d])Lukasiewicz GCI infx2∆I C1 (x) )L C2 (x) ≥ d I I (z-implies C1 C2 [d]) Zadeh's set inclusion GCI infx2∆I C1 (x) )Z C2 (x) ≥ d I I (define-concept A C) concept definition 8x2∆I A (x) = C (x) I I (define-primitive-concept A C) concept subsumption infx2∆I A (x) ≤ C (x) I I (equivalent-concepts C1 C2) concept definition 8x2∆I C1 (x) = C2 (x) (disjoint C1 . Ck) concept disjointness 8i;j2f1;:::;kg;i<j (implies (g-and Ci Cj) *bottom*) (disjoint-union C1 . Ck) disjoint union (disjoint C2 . Ck) and C1 = (or C2 . Ck) (range R C1) range restriction (implies *top* (all RN C)) (domain R C1) fomain restriction (implies (some RN *top*) C) (functional R) functional role RI (a; b) = RI (a; c) ! b = c (reflexive R) reflexive role 8a 2 ∆I ;RI (a; a) = 1. (symmetric R) symmetric role 8a; b 2 ∆I ;RI (a; b) = RI (b; a). I I I (transitive R) transitive role 8a;b2∆I R (a; b) ≥ supc2∆I R (a; c) ⊗ R (c; b). I I (implies-role R1 R2 [d]) RIA infx;y2∆I R1 (x; y) )L R2 (x; y) ≥ d I I − (inverse R1 R2) inverse role R1 ≡ (R2 ) where d is the degree and can be: (i) a variable, (ii) an already defined truth constant, (iii) a rational number in [0; 1], (iv) a linear expression.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-