Loop Amplitudes from MHV Diagrams - Part 1

Loop Amplitudes from MHV Diagrams - Part 1

Loop Amplitudes from MHV Diagrams - part 1 - Gabriele Travaglini Queen Mary, University of London Brandhuber, Spence, GT hep-th/0407214, hep-th/0510253 Bedford, Brandhuber, Spence, GT hep-th/0410280, hep-th/0412108 Brandhuber, McNamara, Spence, GT in progress 2 HP Workshop, Zürich, September 2006 Outline • Motivations and basic formalism • MHV diagrams (Cachazo, Svrcek,ˇ Witten) - Loop MHV diagrams (Brandhuber, Spence, GT) - Applications: One-loop MHV amplitudes in N=4, N=1 & non-supersymmetric Yang-Mills • Proof at one-loop: Andreas’s talk on Friday Motivations • Simplicity of scattering amplitudes unexplained by textbook Feynman diagrams - Parke-Taylor formula for Maximally Helicity Violating amplitude of gluons (helicities are a permutation of −−++ ....+) • New methods account for this simplicity, and allow for much more efficient calculations • LHC is coming ! Towards simplicity • Colour decomposition (Berends, Giele; Mangano, Parke, Xu; Mangano; Bern, Kosower) • Spinor helicity formalism (Berends, Kleiss, De Causmaecker, Gastmans, Wu; De Causmaecker, Gastmans, Troost, Wu; Kleiss, Stirling; Xu, Zhang, Chang; Gunion, Kunszt) Colour decomposition • Main idea: disentangle colour • At tree level, Yang-Mills interactions are planar tree a a A ( p ,ε ) = Tr(T σ1 T σn) A(σ(p ,ε ),...,σ(p ,ε )) { i i} ∑ ··· 1 1 n n σ Colour-ordered partial amplitude - Include only diagrams with fixed cyclic ordering of gluons - Analytic structure is simpler • At loop level: multi-trace contributions - subleading in 1/N Spinor helicity formalism • Consider a null vector p µ µ µ = ( ,! ) • Define p a a ˙ = p µ σ a a ˙ where σ 1 σ • If p 2 = 0 then det p = 0 ˜ ˜ Hence p aa˙ = λaλa˙ · λ (λ) positive (negative) helicity • spinors a b a˙ b˙ Inner products 12 : = ε ab λ λ , [12] := ε ˙λ˜ λ˜ • ! " 1 2 a˙b 1 2 Parke-Taylor formula 4 + + i j A (1 ...i− ... j− ...n ) = " # MHV 12 23 n1 " #" #···" # ☞ ☞ • Colour decomposition and spinor helicity formalism make the simplicity manifest... • ...but we still have to explain it ! Twistor space • Simple geometrical structure of the amplitudes in twistor space (Witten) MHV Diagrams (Cachazo, Svrcek,ˇ Witten) • String theory on twistor space (Witten) Recursion relations for YM tree amplitudes • (Britto, Cachazo, Feng +Witten) Twistor space (in one slide) • Half Fourier transform on spinor variables ∂ (λ ,λ˜ ) (λ ,µ˜ ) λ˜ i a a˙ −→ a a˙ −→ ∂µ ∂ a,a˙ = 1,2 µ i −→ − ∂λ˜ • Twistor space is a copy of C 4 1 (λ,λ˜ ) (tλ,t− λ˜ ) (λ,µ) (tλ,tµ) −→ ➡ −→ 3 4 ☜ # of supersymmetries Projective twistor space, CP | • Fourier transform can be explicitly carried out for MHV amplitudes ‣ Holomorphicity in the spinor variables • Result ≠ 0 if coordinates of gluons satisfy a˙ aa˙ µ + x λa = 0 x = point in Minkowski space • Line in twistor space (Penrose’s incidence relation) ‣ Maps points in Minkowski space to twistors What about generic amplitudes ? • Scattering amplitudes are supported on curves in twistor space (Witten, 2003) • d = q − 1 + l q = # negative helicity gluons, l = # loops • g ≤ l ‣ Tree MHV: q=2, l=0 ➡ d=1, g=0 (complex line) Amplitude Twistor space structure MHV diagrams ! " ! " M MHV ! ! ! " " ! " M M nMHV ! ! " " ! ! " ! " " ! ! ! nnMHV " M M M " " Why MHV diagrams ? • MHV amplitudes localise on lines in twistor space (Witten) • A line in twistor space corresponds to a point in Minkowski space (Penrose) ➡ • An MHV amplitude can be thought of as a local interaction in space-time ! (Cachazo, Svrcek,ˇ Witten) MHV Rules (tree level) (Cachazo, Svrcek,ˇ Witten) • MHV amplitude ➡ MHV vertex • Off-shell continuation for internal (possibly loop) momenta needed: · Internal momentum is off-shell M M · Need to define spinor λ for an off-shell vector! • Need propagators to connect the MHV vertices Off-shell continuation If L 2 = 0 , we can write • ! Laa˙ = laa˙ + zηaa˙ ‣ η a a˙ := η a η˜ a ˙ is a null reference vector ‣ z = L 2 / 2 ( L η ) is a real number · ‣ l a a˙ : = l a l˜ a˙ is the off-shell continuation, ‣ l L η˜ a˙ (equivalent to CSW’s) a ⇒ aa˙ Internal propagators i Just scalar propagators • P2 + iε • At loop level, the i ε prescription is crucial in correctly determining the integration range Proofs of MHV diagrams Tree level • Covariance (η-independence); singularities (Cachazo, Svrcek,ˇ Witten; Britto, Cachazo, Feng, Witten) • MHV diagrams are a special BCFW recursion relation (Risager) • Lagrangian derivation (Mansfield; Gorsky, Rosly) Loop MHV diagrams (Brandhuber, Spence, GT) • Initial prognosis terribly poor... ‣ Twistor string theory dual to conformal supergravity (not Yang-Mills, not even ordinary supergravity) at the quantum level • ...but we tried anyway ! • Simplest amplitude: 1-loop MHV amplitude in N=4 super Yang-Mills • Computed in 1994 by Bern, Dixon, Dunbar, From TreesKoso tow erLoops, cont’d 1 loop tree A − = A Atree MHV∑× the all order in ! 2-mass easy box function: " " 2me 2 2 c! s − Two-mass easyt bo− x function F (s,t,P ,Q ) = − 2F1 (1, ",1 ",as) + − 2F1 (1, ",1 ",at) −"2 µ2 − − µ2 − − !" # " # P2 " Q2 " − − F 1, ",1 ",aP2 − − F 1, ",1 ",aQ2 − µ2 2 1 − − − µ2 2 1 − − & " # $ % " # $ % 2(pq) with a := P2Q2 st − MHV rules for Loops • Sew d MHV vertices q = # negative helicity gluons, d = q − 1 + l • l = # loops • As at tree level, we use a. CSW off-shell continuation b. Scalar propagators • MHV, 1-loop: d = 2 From Trees to Loops (AB-Spence-Travaglini) • Original prognosis from twistor string theory was negative (Berkovits-Witten), Conformal SUGRA modes spoil duality • Try anyway: • Connect MHV vertices, using the same off-shell continuation as for trees • Chose measure, perform loop integration MHV 1-loop amplitudes in N=4/N=1 SYM (agrees with BDDK) • Calculation from MHV diagrams d M∑ d M Z ! Z m1,m2,h • The sum is over ‣ all possible MHV diagrams ‣ internal particle species (g, f, s) and helicities ‣ different from unitarity-based approach of BDDK • We have to find the measure... From Trees to Loops (AB-Spence-Travaglini) • Original prognosis from twistor string theory was negative (Berkovits-Witten), Conformal SUGRA modes spoil duality • Try anyway: • Connect MHV vertices, using the same off-shell continuation as for trees • Chose measure, perform loop integration • MHVThe 1-loop amplitudes integration in N=4/N=1 SYM measur (agrees with BDDK)e · P L is the momentumdM on the left ! Z m1,m2,h 4 4 d L1 d L2 (4) dM := 2 2 δ (L2 L1 + PL) L1 + iε L2 + iε − Use L = l + z η , and L ( l , z ): • → 4 3 d L dz d l ➡ 2 = L + iε z + isgn (l0η0)ε 2l0 dispersive measure X phase-space measure (Nair measure) Loop integral becomes: (Dispersion integral) X (2-particle LIPS integral) • LIPS integral: ‣ computes the cut of the amplitude ‣ regularise IR divergences: 4−2ε dimensions • Dispersion integral reconstructs the amplitude from cuts The return of the analytic S-matrix ! (1966) Comments • Final result is covariant and agrees with BDDK ‣ Non-trivial cancellation of η-dependence • MHV diagrams work for loops ! • Result incorporates a large number of Feynman diagrams ‣ 1 MHV diagram vs 227,585 Feynman diagrams (7 points) More Comments Dispersion integrals are simplei - no • P2 + iε subtractions needed (van Neerven) • No ghosts • Scalar propagators ‣ MHV diagrams related to lightcone gauge quantisation (more on this later) New form of the 2-mass easy box function 2 2 1 ε ε 2 ε 2 2 2 F(s,t,P ,Q ) = ( s)− + ( t)− ( P )− ( Q )− + B(s,t,P ,Q ) −ε2 − − − − − − ! " B(s,t,P2,Q2) = Li (1 aP2) + Li (1 aQ2) Li (1 as) Li (1 at) 2 − 2 − − 2 − − 2 − From Trees to Loops, cont’d P2 + Q2 s t a = − − P2Q2 st − tree 2 A 2 s = (P + p) t = (P + q)MHV× the all order in ! 2-mass easy box function: - More compact than usual expression " " 2me 2 2 c! s − t − F (s,t,P ,Q ) = − 2F1 (1, ",1 ",as) + − 2F1 (1, ",1 ",at) - Simpler−"2 analµ2 ytic contin− uation− µ2 − − !" # " # P2 " Q2 " − − F 1, ",1 ",aP2 − − F 1, ",1 ",aQ2 − µ2 2 1 − − − µ2 2 1 − − & " # $ % " # $ % 2(pq) with a := P2Q2 st − Further applications • One-loop MHV amplitudes in N=1 super Yang-Mills (Bedford, Brandhuber, Spence, GT; Quigley, Rozali) ‣ Result expressed in terms of finite boxes, and triangles ‣ Agreement with BDDK ‣ No twistor string theory for N=1 Super Yang-Mills... ‣ ...nevertheless MHV diagram method works ! • Cut-constructible part of 1-loop MHV amplitudes in non-supersymmetric Yang-Mills (Bedford, Brandhuber, Spence, GT) ‣ Extends 5-pt and adjacent negative helicity cases of BDK and BDDK ‣ First new result at 1-loop in pure YM ‣ Non-supersymmetric amplitudes are not cut-constructible in 4 dimensions ‣ rational terms are missed by MHV diagrams Next goal: Prove MHV diagrams at one loop • Covariance (η-independence) • Correct singularity structure Andreas Brandhuber’s talk: Friday at 11:25 Summary • MHV diagrams provide a new diagrammatic method to calculate scattering amplitudes at tree and one-loop level in Yang-Mills • Proof for generic one-loop amplitudes: ‣ Feynman Tree Theorem ✂ ‣ Singularity structure .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us