Controlling Plasma Reactivity Transfer to Gases, Solids and Liquids by Juliusz A. Kruszelnicki A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering and Radiological Sciences) in the University of Michigan 2021 Doctoral Committee: Professor Mark J. Kushner, Chair Professor Herek L. Clack Professor John E. Foster Professor Bryan R. Goldsmith Professor Ryan D. McBride Juliusz Kruszelnicki [email protected] ORCID iD: 0000-0003-4596-1780 © Juliusz Kruszelnicki 2021 DEDICATION For Justyna, Kamila and Eliza ii ACKNOWLEDGMENTS Throughout my time at the University of Michigan, I was lucky to meet numerous extraordinary people. Without their input, my work would not have been possible. Firstly, I would like to thank my advisor – Professor Mark J. Kushner. He guided me throughout my pursuit of a PhD – sharing his tremendous insight into not only physics, chemistry, and computational science, but also into life as a scientist and beyond. I would also like to thank my committee members – Professors John E. Foster, Ryan D. McBride, Herek L. Clack and Bryan R. Goldsmith. The numerous discussions with them enlightened many aspects of plasma physics and catalysis or me. Secondly, I would like to thank my many colleagues and lab mates: Peng Tian, Wei Tian, Chad Huard, Michael Logue, Soheila Mohades, Guy Parsey, Aram Markosyan, Chenhui Qu, Steven Lanham, Amanda Lietz, Shuo Huang, Xifeng Wang, Jordyn Polito, Mackenzie Meyer, Kseniia Konina, and Florian Krueger, Astrid Raisanen and Tugba Piskin. Many of my best ideas were a direct result of conversations with them. In addition, I would like to thank Julia Falkovitch- Khan, whose tireless work has helped my coworkers and myself out of many crises. Furthermore, I would like to thank my collaborators – Dr. Kenneth Engeling, Dr. Savio Poovathingal, Runchu Ma, and Prof. Wenjung Ning. A special thanks also belongs to Dr. Janis Lai, whose continuous support, advice, and friendship were invaluable assets throughout the pursuit of my degree. iii Thirdly, I want to extend my thanks to the US Department of Energy – Office of Fusion Energy Science, the US National Science Foundation, Michigan Institute of Plasma Science and Engineering, and the Plasma Science Center for making my work possible via financial support. Lastly, I would like to thank my sisters – Justyna, Kamila and Eliza – whose continuous support and encouragement enabled me to complete this work. They stood by me during difficult moments and helped me celebrate the happy ones. Nothing would have been possible without their love. iv Table of Contents DEDICATION .............................................................................................................................. ii ACKNOWLEDGMENTS ........................................................................................................... iii List of Figures .............................................................................................................................. vii List Of Tables ............................................................................................................................. xvi ABSTRACT ............................................................................................................................... xvii Chapter 1 Introduction ........................................................................................................... 1 1.1 Basics of Plasma Physics ................................................................................................. 1 1.2 Reactivity Transfer to Gases: Packed Bed Reactors ........................................................ 5 1.3 Reactivity Transfer to Solids: Plasma Catalysis .............................................................. 8 1.4 Reactivity Transfer to Liquids: Aerosols ....................................................................... 12 1.5 Motivation ...................................................................................................................... 16 1.6 Scope of this Dissertation ............................................................................................... 17 1.7 Figures ............................................................................................................................ 19 1.8 References ...................................................................................................................... 27 Chapter 2 Description of the Model .......................................................................................... 31 2.1 Description of nonPDPSIM ........................................................................................... 31 2.2 Geometry and Mesh ....................................................................................................... 33 2.3 Boltzmann’s and Electron Energy Equations................................................................. 35 2.4 Poisson’s Equation and Charged Species Transport ...................................................... 36 2.5 Neutral Transport ........................................................................................................... 40 2.6 Fluid Flow ...................................................................................................................... 42 2.7 Liquid Module ................................................................................................................ 44 2.8 Tables ............................................................................................................................. 48 2.9 Figures ............................................................................................................................ 49 2.10 References .................................................................................................................. 55 Chapter 3 Reactivity Transfer to Gases: Packed Bed Reactors ............................................. 56 3.1 Introduction .................................................................................................................... 57 3.2 Experimental Conditions ................................................................................................ 59 3.2.1 Hexagonal Lattice PBR........................................................................................... 59 3.2.2 Patterned DBD Reactor........................................................................................... 61 3.3 Plasma Propagation in Hexagonal PBR ......................................................................... 62 3.3.1 Base Case: Hexagonal PBR .................................................................................... 62 3.3.2 Separation of the Rods ............................................................................................ 70 3.3.3 Rotation of the Lattice ............................................................................................ 72 3.3.4 Consequences on Production of Reactive Species .................................................. 76 3.3.5 Variations in Pressures ............................................................................................ 79 3.3.6 Impact of Packing Material: Quartz and Zirconia .................................................. 83 3.3.7 Summary – Hexagonal PBR ................................................................................... 84 3.4 Plasma Properties in Patterned Dielectric Barrier Discharge Reactors .......................... 85 3.4.1 Base Case: Patterned DBD ..................................................................................... 85 v 3.4.2 Positive Polarity Voltage Amplitude ...................................................................... 87 3.4.3 Negative Polarity Voltage Amplitude ..................................................................... 89 3.4.4 Summary – Patterned DBD .................................................................................... 91 3.5 Concluding Remarks ...................................................................................................... 93 3.6 Figures ............................................................................................................................ 94 3.7 References .................................................................................................................... 126 Chapter 4 Atmospheric Pressure Plasma Activation of Water Droplets ............................ 127 4.1 Introduction .................................................................................................................. 128 4.2 Description of the Model.............................................................................................. 131 4.2.1 Reaction Mechanism ............................................................................................. 134 4.2.2 Model Parameters ................................................................................................. 139 4.3 Spatial Effects in Plasma Activated Droplets .............................................................. 140 4.3.1 Reaction-Diffusion: Uniform Initial Gas-Phase Densities ................................... 140 4.3.2 Droplet in a DBD .................................................................................................. 141 4.4 Concluding Remarks .................................................................................................... 151 4.5 Tables ..........................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages269 Page
-
File Size-