Quantum Cavity Optomechanics

Quantum Cavity Optomechanics

Quantum Cavity Optomechanics Nikolai Kiesel The Aspelmeyer Group Optomechanics using Optical Levitation Uros Delic, David Grass, Martin Siegle, Rainer Kaltenbaek, Nikolai Kiesel, Markus Aspelmeyer VCQ, Faculty of Physics, University of Vienna ICTS FPQP 2016 Magnetic and optical levitation teams Mechanical Cats? Cantilever 20µm Trapped Particle Quantum regime of massive resonators Cho , Science 327, 516 (2010) Access a new realm of experimental physics Quantum Foundations macroscopic quantum superposition involving up to 1020 atoms Is there a limit to the size/mass of Schrödinger cats? Mechanical Sensing present performance: zeptogram, zeptonewton, attometer, etc. What are the quantum limits to mechanical sensing? Quantum Information e.g. potential for hybrid quantum information architectures on a chip Can mechanical systems serve as universal quantum bus? Rabl et al., Nature Physics 6, 602 (2010). Mechanical Systems IN the quantum regime 6 GHz piezo vibration Cleland/Martinis Micromechanics, 21013 atoms groups (UCSB); n ~ 0.07 @ 20 mK m ~ 10-12 kg = 71014 AMU April 2010 x ~ 10-16 m (~10-10x its diameter) Ramsey-type interference O’Connell, et al. Nature.464, 697 (2010) Versatility of mechanical resonators photon charge spin atoms magnetic momentum flux Q V(z) ħk U m B Images from S. Gröblacher et al., A. O’Connell et al., D. Rugar et al., D. Hunger et al., O. Romero-Isart et al., Nature Physics 5 (09) Nature 464 (10) Nature 430 (04) PRL 104 (10) PRL 109 (12) Minimizing Decoherence Q: How to achieve large mass AND long coherence time in a quantum experiment? Solid-state mechanical quantum devices (clamped): 1010 – 1016 atoms -12 -8 Coherence time tc 10 – 10 sec O‘Connell et al., Nature 464, 697 (2010) TPPF320 Matter-wave interferometry (free-fall): C284H190F320N4S12 100 – 104 atoms -3 0 Coherence time tc 10 – 10 sec Juffmann et al., Nature Nanotech. 7, 297 (2012) 10 nm A: Quantum control of levitated mechanical systems! • Quantum control of a trapped massive object >> 1010 atoms • Long coherence times (up to seconds) through free fall dynamics • Exceptional force sensitivity Title 1619 Johannes Kepler, De cometis “solar repulsion of comet tails because of mechanical lightText force 1 (radiation pressure)”– Text 2 Text 3 – Text 4 picture: Nature 444, 823 (2006) Radiation pressure as propulsion LightSail-A (32 m2) Title Radiation pressure in the lab 1901 Lebedev, Ann. Phys. 6, 433 Nichols & Hull, Phys. Rev. 13,307 experimental demonstration of radiation pressure Trapping and Cooling Particles by Optical Forces 1970 Arthur Ashkin et al. „Acceleration and Trapping of Particles by Radiation Pressure“ Phys. Rev. Lett. 24, 156 (1970) 1986 Chu, S. et al. ‘‘Experimental observation of optically trapped atoms,’’ Phys. Rev. Lett. 57, 314 Experimental Observation of Optically Trapped Atoms (1986) ~ 500 Na Atoms 10-20mm-sized Silica Spheres and Silicon Oil ~ 10 mm diameter -6 drops of @ 10 mbar, Calc. Energy Decay: days Steven Chu, J. E. Bjorkholm, A. Ashkin, and Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976) A. Cable Phys. Rev. Lett. 57, 314 (1986). Trapping and Cooling Particles by Optical Forces 1970 Arthur Ashkin et al. „Acceleration and Trapping of Particles by Radiation Pressure“ Phys. Rev. Lett. 24, 156 (1970) 1986 Chu, S. et al. ‘‘Experimental observation of optically trapped atoms,’’ Phys. Rev. Lett. 57, 314 Experimental Observation of Optically Trapped Atoms (1986) ~ 500 Na Atoms 10-20mm-sized Silica Spheres and Silicon Oil ~ 10 mm diameter -6 drops of @ 10 mbar, Calc. Energy Decay: days Steven Chu, J. E. Bjorkholm, A. Ashkin, and Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976) A. Cable Phys. Rev. Lett. 57, 314 (1986). Optical Tweezers 70nm silica sphere in optical trap, Gieseler et al., PRL 109, 103603 (2012) 7 Ca-ions Trapped ions: quantum physics with phonons (Cirac & Zoller, PRL 74, 4091 (1995)) see also: ions as (entangled) mechanical oscillators Blatt & Wineland, Nature 453, 1008 (2008) Jost et al., Nature 459, 683 (2009) http://www.forphys.de/Website/qm/exp/v39.html H. C. Nägerl (Blatt group; 1998) IBM Millipede (2005) Quantum Noise in Massive Systems Gravitational wave detectors https://www.ligo.caltech.edu/LA/ page/research-development Quantum Noise in Massive Systems Position Sensitivity: Standard Quantum Limit Gravitational wave detectors Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977) Phys. Rev. Lett. 45, 75 (1980) Mechanical Resonator 2/gm=wmQ /p 1/e displacement x 2p/wm time t 2 w d x dx 2 Q = m 2 g m wm x = Fth dt dt g 0 Mechanical Resonator Normalized Amplitude Normalized time [ms] 2 w d x dx 2 Q = m 2 g m wm x = Fth dt dt g 0 Brownian Force Noise nm 100 gm/2 50 /Hz] 2 T [K] 0 [nm NPS 140 160 180 200 n [kHz] d 2 x dx g w 2 x = F dt 2 m dt m th Characterizing an optical trap Kiesel, N. et al., PNAS 110, 14180 (2013) d 2 x dx g 2 x = F dt 2 0 dt 0 th Mechanical Trap Frequency Power 0 Waist(x)2 Modes of mechanical resonators Aspelmeyer labs Towards room-temperature QOM Magrini, Aspelmeyer Ashkin & Dziedzic, APL 28, 333 -8 Direct 3D Feedback (10 mbar) et al. (2016) (1976)(20um Si oil - projected) Direct Measurement of Photon Recoil Vijay Jain et al. p = 10-6 mbar PRL 116, 243601 (2016) (50-70 nm SiO2) 3D Feedback (10-6 mbar) Vovrosh, J., M. Rashid, D. Hempston, J. Bateman, and H. Ulbricht w arXiv:1603.02917 (2016) Q = m Norte, Moura, g 0 Gröblacher, PRL 116, 147202 (2016) Reinhardt, Müller, Bourassa, Sankey Phys. Rev. X 6, 021001 M. Imboden, P. Mohanty, Phys. Rep. 534, 89 (2014) Cavity Optomechanics L displacement x Change in cavity length leads to a P change in resonance frequency and r e therefore in intra-cavitypower w o p length L Mechanical motion much slower Intracavity power responsible for force acting than cavity lifetime on the mirrors force Fl l force F displacement x time t Position Dependent Force creates an additional harmonic potential displacement x OPTICAL SPRING Cavity Optomechanics Mechanical Period comparable to cavity lifetime Phase delay in intracavity power force F l relative to mechanical position: l l force F force F Light field acts with/against motion displacement x displacement x of mirror time t time t Work is done by the light field / mechanics Heating / Cooling displacement x / cooling heating the mech. oscillator Cavity Optomechanics 1983 Walther group: “Optical bistability and mirror confinement induced by radiation pressure“ , Dorsel et al. PRL 51, 1550 (1983) 2003 Karrai group: „Optically tunable mechanics of microlevers“ Favero et al.,APL 83,1337 (2003) 2005 Vahala group: “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity“ Kippenberg et al.,PRL 93, 83904 (2004) 2006 Aspelmeyer and Kippenberg group, Selfcooling by Radiation Pressure S. Gigan et al. Nature 444, 67–70 (2006), O. Arcizet et al. Nature 444, 71–74 (2006). L displacement x P r e w o p Cavity Optomechanics Radiation pressure induced: - modification of frequency Optical spring - modification of damping Optical damping Theoretical dependencies: Genes et al., Phys. Rev. A 77, 033804 Rev. Mod. Phys. 86, 1391 (2014) Optomechanical Systems Rev. Mod. Phys. 86, 1391 (2014) Optomechanical Systems Quantum Optomechanics - M. Aspelmeyer. P. Meystre, K.Schwab - Physics Today 65 (7), 29 (2012) Particle in a cavity Particle in a cavity Linear Square coupling coupling Particle in a cavity Original mirror: diameter d=12.7mm Cut mirror: width=4mm Particle in a cavity camera TEM00 mode (cavity scanned) nanosphere Towards quantum state preparation of a free particle Levitated Cavity Optomechanics Romero-Isart et al. NJP 12, 33015, (2010) Chang et al., PNAS 107, 1005 (2010) P. F. Barker et al., PRA 81, 023826 (2010) Millen et al., Phys. Rev. Lett. 114, 123602 (2015) Cavity cooling of levitating mesoscopic particle proposed since Horak et al. PRL 79, 4974 (1997), Vuletic et al PRL 84,3787 (2000) Our Experimental Setup trap Kiesel, Blaser, Delic, Grass, Kaltenbaek, cooling Aspelmeyer, PNAS 110, 14180 (2013) Experimental Setup II Silica : r=127 nm +/- 10% Levitation in Cavity @ 4mbar Particle Source: Another Setup picture with cameras Nebulizer Mirror Mirror Choose your interaction QND Measurement Beamsplitter Interaction Squeezing Interaction High Q / Qf Subkelvin Parametric Direct Measurement of Feedback Cooling of a Photon Recoil Laser-Trapped Nanoparticle Vijay Jain et al. Gieseler et al. Phys. PRL 116, 243601 (2016) Rev. Lett. 109, 103603. Jiang, Lin, Rosenberg, Vahala, Painter,, Opt. Exp. 17, 20 911. (2009) Norte, Moura, Gröblacher, PRL 116, 147202 (2016) Reinhardt, Müller, Bourassa, Sankey Phys. Rev. X 6, 021001 Aspelmeyer, Kippenberg, Marquardt, Rev. Mod. Phys. 86, (2014) Quantum Optomechanics Ideal case: resolved sideband regime, RWA full quantum optics toolbox to prepare and control Teufelmechanical et al., Nature quantum 2011 states Chanvia et photonic al., Nature quantum 2011* states Gröblacher et al., Nature 2009 Teufel et al., Nature 2011Requires: Verhagen etMinmum al., Nature entropy 2012 mechanical states (e.g. ground state) + Strong cooperativity g: OM coupling Brooks et al., Nature 2012 k: cavity decay Safavi-Naeini et al., Natureg: mechanical 2013* damping Purdy et al., PRX 2013nbath: bath phonon number Palomaki et al., Science 2013 Early ideas: Riedinger et al., Nature 2016 Zhang, Peng, Braunstein, PRA 68, 013808 (2003) Aspelmeyer, Kippenberg, Marquardt, RMP 86, 1391 (2014) OptomechanicalLinear coupling is Sideband sufficient Cooling Analogue: sideband-resolved cooling of ions heating cooling |n+1>phot F. Marquardt et al. PPRL 99, 093902 (2007) g a I. Wilson-Rae et al., PRL 99, 093901 (2007) A- 0 A+ C. Genes et al., PRA 77, 033804 (2008) |n>phot |n+1>mech |n>mech |n-1>mech Cooling rate Thermal coupling / decoherence) rate Effective mode occupation <<1 for sideband- resolved regime OptomechanicalLinear coupling is Sideband sufficient Cooling Analogue: sideband-resolved cooling of ions First proof-of-concept via photothermal forces heating Karrai (LMU) 2004: Höhberger et al., Nature 432, 1002 (2004) cooling |n+1>phot First demonstrationsF.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us