Superconformal Algebras for Twisted Connected Sums and G2 Mirror Symmetry

Superconformal Algebras for Twisted Connected Sums and G2 Mirror Symmetry

Superconformal algebras for twisted connected sums and G2 mirror symmetry JHEP 1812, 011 (2018) [1809.06376] Marc-Antoine Fiset University of Oxford KITP, Santa Barbara, 12 April 2019 (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) (Md ; g()Mj Ricci(d ; g) g) ≈ 0 Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) (Md ; g()Mj Ricci(d ; g) g) ≈ 0 RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) (Md ; g()Mj Ricci(d ; g) g) ≈ 0 RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Add fermions Add spinors 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) Quantization (Canonical / WZW / α0-expansion) (Md ; g) j Ricci(g) ≈ 0 RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Add fermions Add spinors 2-dim N = 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) Quantization (Canonical / WZW / α0-expansion) 2-dim QFT (Md ; g) j Ricci(g) ≈ 0 2-dim2-dimN = QFT 1 SCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim N = 1 SQFT (Md ; g) 2-dim2-dimN = QFT 1 SQFT Introduction d d 1;9−d (M ; g) j Ricci(g) ≈ 0 M × R Not M-theory! 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim N = 1 SCFT • Not surjective: • Not injective: 9 other constructions of SCFTs Mirror symmetry, T-duality Mirror symmetry for TCS G2? [Braun, Del Zotto '17; '18] Landau-Ginzburg, Gepner, etc. Introduction (Md ; g) j Ricci(g) ≈ 0 2-dim N = 1 SCFT • Not injective: Mirror symmetry, T-duality Mirror symmetry for TCS G2? [Braun, Del Zotto '17; '18] Introduction (Md ; g) j Ricci(g) ≈ 0 • Not surjective: 9 other constructions of SCFTs Landau-Ginzburg, Gepner, etc. 2-dim N = 1 SCFT Introduction (Md ; g) j Ricci(g) ≈ 0 • Not surjective: • Not injective: 9 other constructions of SCFTs Mirror symmetry, T-duality Mirror symmetry for TCS G2? [Braun, Del Zotto '17; '18] Landau-Ginzburg, Gepner, etc. 2-dim N = 1 SCFT Operator algebras TCS Contents 1 Operator algebras Formalism Examples (various Md ) 2 TCS Algebras for TCS G2 mirror symmetry M.-A. Fiset 1809.06376 1-dimensional Z2-graded Lie algebra \Operator algebra" N =1 fGn ; Tngn2Z ; c Lie bracket Vir c := G 3 (z) ; T(2)(z) OPEs 2 c : central charge 0 0 0 0 c=2 2T (z ) @z T (z ) 1 3 T (z)T (z ) ∼ + + [Tm; Tn] = (m − n)Tm+n + (m − m)c (z − z0)4 (z − z0)2 z − z0 12 T (z)G(z0) ∼ ::: [Tm; Gn] = ::: 0 [Gm; Gn] = ::: G(z)G(z ) ∼ ::: Generators(weights) Operator algebras Formalism TCS Examples Operator algebras: formalism (Md ; g) j Ricci(g) ≈ 0 2-dim N = 1 SCFT Virasoro N = 1 acts on the Hilbert space. M.-A. Fiset 1809.06376 \Operator algebra" N =1 Vir c := G 3 (z) ; T(2)(z) OPEs 2 c=2 2T (z0) @0 T (z0) T (z)T (z0) ∼ + + z (z − z0)4 (z − z0)2 z − z0 T (z)G(z0) ∼ ::: G(z)G(z0) ∼ ::: Generators(weights) Operator algebras Formalism TCS Examples Operator algebras: formalism (Md ; g) j Ricci(g) ≈ 0 2-dim N = 1 SCFT Virasoro N = 1 acts on the Hilbert space. 1-dimensional Z2-graded Lie algebra fGn ; Tngn2 ; c Lie bracket Z c : central charge 1 3 [Tm; Tn] = (m − n)Tm+n + (m − m)c 12 [Tm; Gn] = ::: [Gm; Gn] = ::: M.-A. Fiset 1809.06376 Operator algebras Formalism TCS Examples Operator algebras: formalism (Md ; g) j Ricci(g) ≈ 0 2-dim N = 1 SCFT Virasoro N = 1 acts on the Hilbert space. 1-dimensional Z2-graded Lie algebra \Operator algebra" N =1 fGn ; Tngn2Z ; c Lie bracket Vir c := G 3 (z) ; T(2)(z) OPEs 2 c : central charge 0 0 0 0 c=2 2T (z ) @z T (z ) 1 3 T (z)T (z ) ∼ + + [Tm; Tn] = (m − n)Tm+n + (m − m)c (z − z0)4 (z − z0)2 z − z0 12 T (z)G(z0) ∼ ::: [Tm; Gn] = ::: 0 [Gm; Gn] = ::: G(z)G(z ) ∼ ::: Generators(weights) M.-A. Fiset 1809.06376 Operator algebras Formalism TCS Examples Operator algebras: formalism Assemble your favorite name! (closely related concepts): Chiral (Super-)Conformal Vertex Operator W Field Algebra Lie conformal / Current Λ-bracket • Vertex Operator Algebra [Borcherds '86; Frenkel, Lepowsky, Meurman '88; Kac '98; Frenkel, Ben-Zvi '01] M.-A. Fiset 1809.06376 Operator algebras Formalism TCS Examples Operator Algebra [Thielemans '95 hep-th/9506159] Mathematica package 1 Vector space V of operators denoted f1; A; B;:::g. We think of elements of V as operators acting on the Hilbert space of the QFT. b f b 2 Z2-grading V = V ⊕ V and 1 2 V . 3 Even linear map @ : V ! V (e.g. @z ). 4 Sequence of bilinear pairings ·· : V ⊗ V V, n 2 , compatible with n ! Z the grading and s.t. (terms in OPEs) (0) 8 A; B 2 V, 9 n(A; B) 2 such that AB = 0 : Z n≥n(A;B) (1)( unity): 1A = δ A 8A 2 V n 0;n (2)( commutativity): m jAjjBj X (−1) (m−n) BA = (−1) @ AB 8n 2 Z n (m − n)! m m≥n (3)( associativity): X n − 1 A BC = (−1)jAjjBj B AC + AB C m n l − 1 l n m l≥1 m+n−l Normal ordering: :AB: := AB 0 M.-A. Fiset 1809.06376 Operator algebras Formalism TCS Examples Calabi-Yau: Virasoro N = 2 (Md ; g) j Ricci(g) ≈ 0 2-dim N = 1 SCFT N =1 Vir c := G 3 ; T(2) j OPEs 2 \ N =2 ~ Vir c := G 3 ; T(2) ; J(1) ; G 3 ) j OPEs 2 2 Properties / applications: • Spacetime supersymmetry • Spectral flow: Isomorphism NS / R • Chiral ring of special NS fields (chiral primaries) related to Ramond ground states and Dolbeault cohomology • Topological twists • etc. [Lerche, Vafa, Warner '89; Banks, Dixon, Friedan, Martinec '88, etc.] M.-A. Fiset 1809.06376 N =4 4 • e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us