Bibliography

Bibliography

Bibliography Aarup, M., Arentoft, M. M., Parrod, Y., Stader, J., Aldous, D. and Vazirani, U. (1994). “Go with the win- and Stokes, I. (1994). OPTIMUM-AIV: A knowledge- ners” algorithms. In Proceedings of the 35th Annual based planning and scheduling system for spacecraft Symposium on Foundations of Computer Science, pp. AIV. In Fox, M. and Zweben, M. (Eds.), Knowl- 492–501, Santa Fe, New Mexico. IEEE Computer So- edge Based Scheduling. Morgan Kaufmann, San Ma- ciety Press. teo, California. Allais, M. (1953). Le comportment de l’homme ra- Abramson, B. and Yung, M. (1989). Divide and con- tionnel devant la risque: critique des postulats et ax- quer under global constraints: A solution to the N- iomes de l’ecole´ Americaine.´ Econometrica, 21, 503– queens problem. Journal of Parallel and Distributed 546. Computing, 6(3), 649–662. Allen, J. F. (1983). Maintaining knowledge about tem- Ackley, D. H. and Littman, M. L. (1991). Interactions poral intervals. Communications of the Association for between learning and evolution. In Langton, C., Tay- Computing Machinery, 26(11), 832–843. lor, C., Farmer, J. D., and Ramussen, S. (Eds.), Arti- Allen, J. F. (1984). Towards a general theory of action ficial Life II, pp. 487–509. Addison-Wesley, Redwood and time. Artificial Intelligence, 23, 123–154. City, California. Allen, J. F. (1991). Time and time again: The many Adelson-Velsky, G. M., Arlazarov, V. L., Bitman, ways to represent time. International Journal of Intel- A. R., Zhivotovsky, A. A., and Uskov, A. V. (1970). ligent Systems, 6, 341–355. Programming a computer to play chess. Russian Math- Allen, J. F. (1995). Natural Language Understanding. ematical Surveys, 25, 221–262. Benjamin/Cummings, Redwood City; California. Adelson-Velsky, G. M., Arlazarov, V. L., and Don- Allen, J. F., Hendler, J., and Tate, A. (Eds.). (1990). skoy, M. V. (1975). Some methods of controlling the Readings in Planning. Morgan Kaufmann, San Ma- tree search in chess programs. Artificial Intelligence, teo, California. 6(4), 361–371. Almuallim, H. and Dietterich, T. (1991). Learning Agmon, S. (1954). The relaxation method for linear with many irrelevant features. In Proceedings of the inequalities. Canadian J. Math., 6(3), 382–392. Ninth National Conference on Artificial Intelligence Agre, P. E. and Chapman, D. (1987). Pengi: an im- (AAAI-91), Vol. 2, pp. 547–552, Anaheim, California. plementation of a theory of activity. In Proceedings of AAAI Press. the Tenth International Joint Conference on Artificial ALPAC (1966). Language and machines: Computers Intelligence (IJCAI-87), pp. 268–272, Milan. Morgan in translation and linguistics. Tech. rep. 1416, The Au- Kaufmann. tomatic Language Processing Advisory Committee of Aho, A. V., Hopcroft, J., and Ullman, J. D. (1974). the National Academy of Sciences, Washington, DC. The Design and Analysis of Computer Algorithms. Alshawi, H. (Ed.). (1992). The Core Language En- Addison-Wesley, Reading, Massachusetts. gine. MIT Press, Cambridge, Massachusetts. Aho, A. V. and Ullman, J. D. (1972). The Theory Alterman, R. (1988). Adaptive planning. Cognitive of Parsing, Translation and Compiling. Prentice-Hall, Science, 12, 393–422. Upper Saddle River, New Jersey. Amarel, S. (1968). On representations of problems of Ait-Kaci, H. and Podelski, A. (1993). Towards a reasoning about actions. In Michie, D. (Ed.), Machine meaning of LIFE. Journal of Logic Programming, Intelligence 3, Vol. 3, pp. 131–171. Elsevier/North- 16(3–4), 195–234. Holland, Amsterdam, London, New York. Aizerman, M., Braverman, E., and Rozonoer, L. Ambros-Ingerson, J. and Steel, S. (1988). Integrating (1964). Theoretical foundations of the potential func- planning, execution and monitoring. In Proceedings tion method in pattern recognition learning. Automa- of the Seventh National Conference on Artificial Intel- tion and Remote Control, 25, 821–837. ligence (AAAI-88), pp. 735–740, St. Paul, Minnesota. Albus, J. S. (1975). A new approach to manipulator Morgan Kaufmann. control: The cerebellar model articulation controller Amit, D., Gutfreund, H., and Sompolinsky, H. (1985). (CMAC). Journal of Dynamic Systems, Measurement, Spin-glass models of neural networks. Physical Re- and Control, 97, 270–277. view, A 32, 1007–1018. 987 988 Bibliography Andersen, S. K., Olesen, K. G., Jensen, F. V., and Ashby, W. R. (1940). Adaptiveness and equilibrium. Jensen, F. (1989). HUGIN—a shell for building Journal of Mental Science, 86, 478–483. Bayesian belief universes for expert systems. In Pro- Ashby, W. R. (1948). Design for a brain. Electronic ceedings of the Eleventh International Joint Confer- Engineering, December, 379–383. ence on Artificial Intelligence (IJCAI-89), Vol. 2, pp. 1080–1085, Detroit. Morgan Kaufmann. Ashby, W. R. (1952). Design for a Brain. Wiley, New Anderson, A. R. (Ed.). (1964). Minds and Machines. York. Prentice-Hall, Upper Saddle River, New Jersey. Asimov, I. (1942). Runaround. Astounding Science Anderson, J. A. and Rosenfeld, E. (Eds.). Fiction, March. (1988). Neurocomputing: Foundations of Research. Asimov, I. (1950). I, Robot. Doubleday, Garden City, MIT Press, Cambridge, Massachusetts. New York. Anderson, J. R. (1980). Cognitive Psychology and Its Astrom, K. J. (1965). Optimal control of Markov Implications. W. H. Freeman, New York. decision processes with incomplete state estimation. Anderson, J. R. (1983). The Architecture of Cog- J. Math. Anal. Applic., 10, 174–205. nition. Harvard University Press, Cambridge, Mas- Audi, R. (Ed.). (1999). The Cambridge Dictionary of sachusetts. Philosophy. Cambridge University Press, Cambridge, Andre, D. and Russell, S. J. (2002). State abstrac- UK. tion for programmable reinforcement learning agents. Austin, J. L. (1962). How To Do Things with Words. In Proceedings of the Eighteenth National Conference Harvard University Press, Cambridge, Massachusetts. on Artificial Intelligence (AAAI-02), pp. 119–125, Ed- monton, Alberta. AAAI Press. Axelrod, R. (1985). The Evolution of Cooperation. Anshelevich, V. A. (2000). The game of Hex: An au- Basic Books, New York. tomatic theorem proving approach to game program- Bacchus, F. (1990). Representing and Reasoning ming. In Proceedings of the Seventeenth National with Probabilistic Knowledge. MIT Press, Cambridge, Conference on Artificial Intelligence (AAAI-00), pp. Massachusetts. 189–194, Austin, Texas. AAAI Press. Bacchus, F. and Grove, A. (1995). Graphical models Anthony, M. and Bartlett, P. (1999). Neural Network for preference and utility. In Uncertainty in Artificial Learning: Theoretical Foundations. Cambridge Uni- Intelligence: Proceedings of the Eleventh Conference, versity Press, Cambridge, UK. pp. 3–10, Montreal, Canada. Morgan Kaufmann. Appel, K. and Haken, W. (1977). Every planar map is Bacchus, F. and Grove, A. (1996). Utility indepen- four colorable: Part I: Discharging. Illinois J. Math., dence in a qualitative decision theory. In Proceedings 21, 429–490. of the Fifth International Conference on the Princi- Apt, K. R. (1999). The essence of constraint propaga- ples of Knowledge Representation and Reasoning, pp. tion. Theoretical Computer Science, 221(1–2), 179– 542–552, San Mateo, California. Morgan Kaufmann. 210. Bacchus, F., Grove, A., Halpern, J. Y., and Koller, Apte´, C., Damerau, F., and Weiss, S. (1994). Auto- D. (1992). From statistics to beliefs. In Proceedings mated learning of decision rules for text categoriza- of the Tenth National Conference on Artificial Intelli- tion. ACM Transactions on Information Systems, 12, gence (AAAI-92), pp. 602–608, San Jose. AAAI Press. 233–251. Bacchus, F. and van Beek, P. (1998). On the conver- Arkin, R. (1998). Behavior-Based Robotics. MIT sion between non-binary and binary constraint satis- Press, Boston, MA. faction problems. In Proceedings of the Fifteenth Na- Armstrong, D. M. (1968). A Materialist Theory of the tional Conference on Artificial Intelligence (AAAI-98), Mind. Routledge and Kegan Paul, London. pp. 311–318, Madison, Wisconsin. AAAI Press. Arnauld, A. (1662). La logique, ou l’art de penser. Bacchus, F. and van Run, P. (1995). Dynamic variable Chez Charles Savreux, au pied de la Tour de Nostre ordering in CSPs. In Proceedings of the First Interna- Dame, Paris. tional Conference on Principles and Practice of Con- straint Programming, pp. 258–275, Cassis, France. Arora, S. (1998). Polynomial time approximation Springer-Verlag. schemes for Euclidean traveling salesman and other geometric problems. Journal of the Association for Bachmann, P. G. H. (1894). Die analytische Zahlen- Computing Machinery, 45(5), 753–782. theorie. B. G. Teubner, Leipzig. Bibliography 989 Backus, J. W. (1996). Transcript of question and an- Bartak, R. (2001). Theory and practice of constraint swer session. In Wexelblat, R. L. (Ed.), History of Pro- propagation. In Proceedings of the Third Workshop gramming Languages, p. 162. Academic Press, New on Constraint Programming for Decision and Control York. (CPDC-01), pp. 7–14, Gliwice, Poland. Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Mod- Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). ern Information Retrieval. Addison Wesley Longman, Learning to act using real-time dynamic programming. Reading, Massachusetts. Artificial Intelligence, 73(1), 81–138. Bajcsy, R. and Lieberman, L. (1976). Texture gra- Barto, A. G., Sutton, R. S., and Anderson, C. W. dient as a depth cue. Computer Graphics and Image (1983). Neuronlike adaptive elements that can solve Processing, 5(1), 52–67. difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics, 13, 834–846. Baker, C. L. (1989).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us