NASA CR N70-2062 RECUPERATOR DEVELOPMENT PROGRAM SOLAR BRA^Y i CYCLE SYSTEM A. F. Anderson, et aL Airesearch Manufacturing Division Los Angeles, California 19 March 1968 -90637 03 (NASA'CR OR TMX OR AD NUMBER) (CATEGORY) Distributed .,, 'to foster, serve and promote the nation's economic development and technological advancement' CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION .i1-* ^*l r* \ / "f AO I 1 i * U S DEPARTMENT OF COMMERCE/NaUgrtal guVeail^f Standards ~ ' <i T l'VZ-3 • •• o • •• *^ This document has been approved lor public release and sale" icun LibHARY KAFB, NM ric JAL v. ., .y.ll . - i IVI i . • l •>..,,- i %'.'.. i\ ; Reproduced by th« CLEARINGHOUSE for F*d«rBl Scientific & Technical Information Springfield Va. 22151 FINAL DESIGN REPORT RECUPERATOR DEVELOPMENT PROGRAM SOLAR BRAYTON CYCLE SYSTE NASA CONTRACT- NAS 3-2793 HT-66-0207^-"'' March 19, Prepared by: A F Anderson Edi ted by E F Busch Approved fty F. t. Car to! \KCi-. i.i ..''^/.C.L'l-i Lf A ^v-lc C'lilo nr CONTENTS Sect ion Page INTRODUCTION AND SUMMARY I Parametric Design Study I Final Design Investigations 2 HEAT TRANSFER MATRIX PARAMETRIC ANALYSIS Multi-Pass Cross-Counterf low Tubular Heat Exchangers 4 Multi-Pass Cross-Counterf low Plate-Fin Heat Exchangers 17 Pure Counterflow Tubular Heat Exchangers 23 Pure Counterflow Plate-Fin Heat Exchangers 28 OPERATING CONDITION AND HEAT EXCHANGER TYPE SELECTION , 39 Comparison of Heat Exchanger Types 39 Preliminary Design Selection 40 Detailed Parametric Study 43 Ti.TAiir«iii A o -nr> Triangular End Section Selection 47 Triangular End Section Heat Transfer Analysis 54 AXIAL CONDUCTION TESTING 57 Importance of Axial Conduction 57 Test Program 60 Influence of Axial Conduction on Heat Exchanger Design 70 FLOW DISTRIBUTION 77 Manifold Flow Distribution 79 Heat Exchanger Flow Distribution 92 Summary of Flow Distribution Tests 102 MECHANICAL DESIGN 103 Configuration Changes 103 Strcsb Analysis of Recuperator Structure 103 67-0207 AIRI i Aii' ii r.ANiir;,ciiiiiiNCi Page i CONTENTS (Continued) Sect ion Page Suppoit Bracket Design and Analysis "* 108 Recuperator 180636 Fabrication I 16 PRESSURE DROP REDUCTION STUDIES AND FINAL DESIGN 120 SELECTION Pressure Drop Studies 120 Final Design Selection 125 RECUPERATOR ACCEPTANCE TEST 127 Test Setup 127 Test Procedure 127 Test Results 131 REFERENCES 145 67-0207 • •"'I /I' I i Aid 11 fu,NUfA( ll',>!'\'l, DIVI ION Page ii I 10 * IM f ( I ' I t APPENDICES Appendix Page A AXIAL CONDUCTION EFFECT (5 Pages) A-l i «••' B BASIC DATA FOR AXIAL FLOW OUTSIDE TUBE BUNDLES (3 Pages) B-l C COUNTERFLOW TUBULAR HEAT EXCHANGER DESIGN PROGRAM (5 pages) C-l D END SECTION PRESSURE LOSS COMPUTER PROGRAM (6 Pages) D-l Triangular End Shape Designs D-l Rectangular End Shape Designs D-3 Input Requirements D-3 Output Information D-5 E STRESS ANALYSIS OF RECUPERATOR MOUNTING AND SYSTEM E-l INTEGRATION (41 Pages) Assumptions D-l Loads Formulation E-l Load Calculations E-9 ~ • A,I • - c r> 1 . - r _ _ ru-^i -_juiu. _..«.t,,., = ji Allowable Loads at Duct Flange Locations E-31 References E-41 F ADDITIONAL TASKS COMPLETED DURING THE DEVELOPMENT F-l PROGRAM ( Pages) Meteoroid Protection F-l Special Tubular Recuperator Design F-4 Xenor-Helium Mixture Studies F-4 Preliminary Analysis of Heat Sink Heat Exchangers F-5 Advanced Development Designs F-6 ATTACHMENTS Fo11ow i n g Page Drawing 180636 I 16 Program Summary F-9 67-0207 ,rAi«:ii M/inirAciuuiNG UIVIUON Paqe i i i " «nf r- C*M a n J ILLUSTRATIONS Figure Page 1 Tubular Multipass Cross Counterflow Core~*Parameters 5 Versus Effectiveness 2 Tubular Multipass Cross Counterflow Core Parameters 6 Versus Percent Pressure Drop 3 Tubular Multipass Cross Counterflow Core Parameters 7 Versus Percent Pressuie Drop 4 Simple Packaging of Tubular Cross Counterflow Heat 9 Exchanger 5 Conventional Packaging for Tubular Cross Counterflow II Heat Exchanger 6 Typical Packaging for Tubular Cross Counterflow Heat 12 Exchanger 7 Alternate Packaging for Tubular Cross Counterflow Heat 13 Exchanger o Iiuiiii.vjiii~t2iii.iii~ r\ I iiy ra*~ iso 14 i 11 ij CM iuuuldl wiwsa it Counterflow Heat Exchanger 9 Single Ring Packaging of Tubular Cross Counterflow 15 Heat Exchanger 10 Tubular Multipass Cross Counterflow Heat Exchanger 16 Parameters Versus Effectiveness 11 Plate-Fin Multipass Cross Counterflow Core Parameters 18 Versus Effectiveness 12 Plate-Fin Multipass Cross Counterflow Core Parameters 19 Versus Percent Pressure Drop \5 Plate-iFin Multipass Cross Counterflow Core Parameters 20 Versus Percent Pressure Diop 14 Simple Packaging of PlaLe-rin Cross Counterflow 21 Heat Exchanger 15 Typical Plate-fin Cross Counterflow Heat E>changer 22 16 Tubular Pure Countoiflou Minimum Weight Coicb Versus 24 E f feel i verseSb - - -, 67-0207 -V N ,., ,ti-;l <\n,.v \i« h MANUI iiLH I i'\'G OIVisiON PnOS I V ^^ I Li. A ri r La ' ''« I I "'" ILLUSTRATIONS (Continued) 1 I i Figure Page 17 Tubular Pure Counterflow Minimum Face Area Cores 25 Versus Effectiveness 18 Effect of Outside Tube Performance Characteristics 27 /; on Pure Counterflow Tubular Cores I i 19 Rectangular Packaging of Tubular Pure Counterflow 29 * j Heat Exchanger ,i i 20 Mult(concentric Ring Packaging of Tubular Pure 30 ! Counterflow Heat Exchanger 1 21 Tubular Pure Counterflow Heat Exchanger Parameters 31 Versus-Effectiveness 22 Plate-Fin Pure Counterflow Core Parameters Versus 32 Effectiveness 23 Plate-Fin Pure Counterflow Core Parameters Versus 33 ] Percent Pressure Drop j '« r i rtif — rinrui.2 I.UIJH iciii-m wic iaioi ic>-c-, i ^ «c T >u~* 34 , Percent Pressure Drop 25 Typical Plate-Fin Pure Counterflow Heat Exchanger 36 26 Alternate Packaging of Plate-Fin Pure Counterflow 37 Heat Exchanger 27 Plate-Fin Pure Counterflow Heat Exchanger Parameters 38 Versus Effectiveness 28 Heat Exchanger Weights and Projected Areas for Three 41 Matrix Types ?9 Heat Exchanger Minimum Weights and Minimum Projected 42 Areas for Biayton Cycle Application , 30 Effect of Tola? Pressure Drop and Effectiveness on 44 Heat Exchanger Dimensions 31 Recuperator Pressure Drops 46 3? Countcrflow Design Concepts 48 33 Pressure Drop in TiianguUn End Sections 49 67-0207 DlViblON »•• >, CJM,.IH V, V ILLUSTRATIONS (Continued) Figu re Page 34 Effects of Split Between High and Low Pressure Face 51 Areas on End Pressure Losses 35 Effect on Flow Distribution of Identical Triangular 52 End Sections 36 Effect of End Section Height on End Pressure Losses 53 37 Gas Outlet Temperature Distribution 55 38 Number Heat Transfer Units, Counterflow Heat Exchanger 58 39 Electrica 1-Thermal Conductivity Data 61 40 Test Specimen for Axial Conduction Test 62 41 Axial Conduction Test Sample 66 42 Braze Penetration of Hastelloy "C" 68 43 Braze Penetration of Type 347 Stainless Steel 69 39 44 Thermal Conductivity of Stainless Steel and Hastelloy "C" 71 45 Comparison of Stainless Steel and Hastelloy "C" Plates 72 in the Recuperator Design 46 Effect of Changing Fin Conductivity on Recuperator 75 Design 47 Effect of Nonuniform Flow on Recuperator Performance 78 48 Schematic Diagram of Inlet and Exit Headers 80 49 Recuperator Pressure Distribution in Inlet and Exit Headers 81 for Design Point Condition and Geometry of Drawing LI98005 50 Flow Distribution in Vertical Direction 82 51 Schematic of Full Scale Manifolds 84 52 Low Pressure Side Pressure Distribution in Inlet and 85 Exit Headers for Design Point Condition and Manifold Geometry Shown in Figure 51 a I r>^ High Pressure Side P'essurc Distribution in Inlet and 86 Exit Headers foi Design Point Condition and Manifold Gnome-try of figure 51 b 66-OP07 1; ,[ .1 UAH MAiJlttAni KING DIVISION In t>ffi OMutoa Page vi ILLUSTRATIONS (Continued) Figure Page 54 .Flow Distribution in Recuperator Core BaspH on Pressure 87 Distributions of Figures 52 and 53 55 Recuperator Manifold Construction 88 56 Screen Matrices Simulating Recuperator Core 89 57 Low Pressure Manifold Test Setup 90 58 Manifold Test Schematic , 91 59 Recuperator Flow Schematic 94 60 Flow Distribution Test Unit 95 61 Installed Flow Distribution Test Unit 96 62 Estimated and Test Performance of 2 in. High Test Core 98 63 Cold Side Outlet Temperature Deviation From Mixed-Mean 100 i' U-~* CwU^r.^ .• Cl«n Hi et r t hut inn Tp<5t ^ptlin 101 65 Recuperator Thermal Stress Cycle 106 66 Heat Exchanger Subdivisions and Resultant Temperatures 107 67 Duct and Support Locations on Recuperator 113 68 Final Recuperator, 180636 117 69 Three Module Core 119 70 Comparison of Predicted and Test Performance l?l 71 "Split End" Recuperatoi Configuration 122 72 Recuperator Flow Schematic 124 73 Schematic Diagram, Heat Transfer Performance Test Setup 128 74 Heat Transfer Performance Test Setup 129 7b Estimated and Test Performance^—Recupcrator-l 80636 135 \- - 66-0207 if-«i^ " •?•«r_ _'A JA M isuiut, /ANUI AC UlRlf'ti *,.,,„<-,.,„„. DIVISIO„N ragPineo vv/i , i ! ILLUSTRATIONS (Continued) F i gu re Page 76 Predicted and Test Pressure Loss (Hot or Low Pressure) 139 of Recuperator 180636 ^ 77 Predicted and Test Pressure Loss (Cold or High Pressure) 140 of Recuperator 180636 78 Estimated Performance with Air, of Recuperator 180636 143 79 Estimated Performance wilh Argon, of Recuperator 180636 66-0107 "\ / ' i '.I ARCH MfUlll ACKiKI"!'. u / r i F rtge ^> > i TABLES 1 Effect of Axial Conduction on Performance 59 2 Equations for Estimating Thermal Conductivity for Nickel 63 and Iron Base A 1loys 3 Sample Description 65 Measured Resistance Values 65 5 Resistance Values and Physical Dimensions of Braze 67 Coated Strips 6 Effect of Pressure Drop on Recuperator Weight 73 7 Load Resultants I 14 8 Allowable Duct Flange Loads 116 9 Summary of Recuperator Pressure Drops 125 10 Pressure Losses for Final Recuperator Configuration 126 •sample lest conditions lou 12 Typical Test Data 130 66-0«>07 , „..,.,.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages236 Page
-
File Size-