Fourier Series and Fourier Transform

Fourier Series and Fourier Transform

2 Fourier Series and Fourier Transform 2.1 INTRODUCTION Fourier series is used to get frequency spectrum of a time-domain signal, when signal is a periodic function of time. We have seen that the sum of two sinusoids is periodic provided their frequencies are integer multiple of a fundamental frequency, w0. 2.2 TRIGONOMETRIC FOURIER SERIES Consider a signal x(t), a sum of sine and cosine function whose frequencies are integral multiple of w0 x(t) = a0 + a1 cos (w0t) + a2 cos (2w0t) + ··· b1 sin (w0t) + b2 sin (2w0t) + ··· ∞ x(t) = a0 + ∑ (an cos (nw0t) + bn sin (nw0t)) (1) n=1 a0, a1,..., b1, b2,... are constants and w0 is the fundamental frequency. Evaluation of Fourier Coefficients To evaluate a0 we shall integrate both sides of eqn. (1) over one period (t0,t0 + T) of x(t) at an arbitrary time t0 t0+T t0+T ∞ t0+T ∞ t0+T x(t)dt = a0dt + ∑ an cos (nw0t)dt + ∑ bn sin (nw0t)dt n=1 n=1 tZ0 tZ0 tZ0 tZ0 Since t0+T cos (nw dt) = 0 t0 0 R t0+T sin (nw0dt) = 0 tZ0 t0+T 1 a = x(t)dt (2) 0 T tZ0 To evaluate an and bn, we use the following result: t0+T 0 m = n cos (nw0t)cos (mw0t)dt = 6 T/2 m = n = 0 tZ0 6 94 96 Basic System Analysis • Multiply eqn. (1) by sin (mw0t) and integrate over one period t0+T t0+T ∞ t0+T x(t)sin (mw0t)dt = a0 sin (mw0t)dt + ∑ an cos (nw0t)sin (mw0t)dt + n=1 tZ0 tZ0 tZ0 ∞ t0+T ∑ bn sin (mw0t)sin (nw0t)dt n=1 tZ0 t0+T 2 b = x(t)sin (nw t)dt (4) n T 0 tZ0 Example 1: 1.0 − −3 −2 −1 0 1 2 3 − −1.0 Fig. 2.1. T 1to1 T = 2 w0 = π x(t) = t, 1 < t < 1 → − − 1 1 1 a0 = t dt = (1 1) = 0 2 4 − Z1 − an = 0 1 π π 1 π t cos nt cos nt bn = t sin ntdt = − π π n − n 1 Z1 − − 1 π π 1 1 π π π = − [t cos nt + cos nt] 1 = [2cos + cos cos ] nπ − −nπ − 2 2 ( 1)n b = − cos nπ = − − n nπ π n b1 b2 b3 b4 b5 b6 2 2 2 2 2 2 − − − ··· π 2π 3π 4π 5π 6π ∞ 2 ( 1)n x(t) = ∑ − − sin nπt π n n=1 2 1 1 1 = sin πt sin 2πt + sin 3πt sin 4πt + π − 2 3 − 4 ··· Fourier Series and Fourier Transform 97 • Example 2: 1.0 −2π 0 2π 4π 6π t Fig. 2.2. t 2π x(t) = T = 2π w = = 1 2π 0 T 2π π 1 1 1 2 1 a = x(t)dt = t2 = 0 π2 T 4 2 0 2 Z0 2π π 2 1 t sin t sin nt 2 a = t cos ntdt = + n π2 π2 4 2 n n 0 Z0 1 2πsin 2nπ sin 2nπ = + = 0 2π2 n n 2π 2 1 t cos nt cos nt 2π bn = t sin ntdt = − + 4π2 2π2 n n 0 Z0 h i 1 2πcos 2nπ cos 2nπ 1 = − + 2π2 n n − n 1 b = − n nπ 1 ∞ 1 1 1 ∞ 1 x(t) = + ∑ − sin nt = + ∑ cos (nt + π/2) 2 nπ 2 π n n=1 n=1 1 1 sin 2t sin 3t = sin t + + + 2 − π 2 3 ··· Example 3: A x(t) −T/2 −T/4 T/4 T/2 t Fig. 2.3. Rectangular waveform 98 Basic System Analysis • Figure shows a periodic rectangular waveform which is symmetrical to the vertical axis. Obtain its F.S. representation. ∞ x(t) = a0 + ∑ (an cos nw0t + bn sin nw0t) n=1 ∞ x(t) = a0 + ∑ an cos (nw0t) bn = 0 n=1 T T x(t) = 0 for − < t < − 2 4 T T + A for − < t < 4 4 T T 0 for < t < 4 2 T/4 1 A a = Adt = 0 T 2 TZ/4 − T/4 2 2A T T an = Acos (nw0t)dt = sin nw0 + sin nw0 T Tnw0 4 4 TZ/4 − 4A nπ 2A nπ 2π a = sin = sin w = n 2πn 2 πn 2 0 T 4A 2A a = = 1 2π π a2 = 0 2A 3π 2A 2A a3 = sin = ( 1) = − 3π 2 3π − 3π A 2A 1 1 x(t) = + cos w0t cos 3w0t + cos 5w0t + 2 π − 3 5 ··· Example 4: Find the trigonometric Fourier series for the periodic signal x(t). x(t) 1.0 −9 −7 −5 −3 −1 0 1 3 5 7 9 11 t T Fig. 2.4. Fourier Series and Fourier Transform 99 • SOLUTION: 1 1 < t < 1 bn = 0 x(t) = − 1 1 < t < 3 ( − 3 1 3 1 1 a0 = x(t)dt = dt + ( 1)dt T = 4 T T − Z1 Z1 Zt − − 1 2π 2π π = [2 2] = 0 ∴ w0 = = = T − T 4 2 1 3 2 an = cos (nw0t)dt + cos (nw0t)dt T Z1 Z1 − 2 πn 3nπ nπ = 2sin sin sin 2πn 2 − 2 − 2 h i 1 nπ 3nπ 3nπ nπ nπ = 3sin sin sin = sin π + = sin nπ 2 − 2 2 2 − 2 4 nπ a = sin n nπ 2 0 n = even 4 a = n = 1,5,9,13 n nπ 4 − n = 3,7,11,15 nπ 4 π 4 3π 4 5π 4 7π x(t) = cos t cos t + cos t cos t + π 2 − 3π 2 5π 2 − 7π 2 ··· 4 π 1 3π 1 5π x(t) = cos t cos t + cos t π 2 − 3 2 5 2 ··· Example 5: Find the F.S.C. for the continuous-time periodic signal x(t) = 1.5 0 t < 1 ≤ = 1.5 1 t < 2 − ≤ with fundamental freq. w0 = π x(t) 1.5 0 1 23 4 5 −1.5 Fig. 2.5. 100 Basic System Analysis • SOLUTION: 2π T = = 2, w0 = π w0 a0 = an = 0 1 2 bn = 1.5sinnπtdt 1.5sinnπtdt − Z0 Z1 1.5 = [ cosnπ + 1] + [cos2nπ cosnπ] nπ − − n o 3 bn = [1 cosnπ] nπ − 3 2 2 x(t) = 2sinπt + sin3πt + sin5πt + π 3 5 ··· 6 1 1 sinπt + sin3πt + sin5πt + π 3 5 ··· 1 2 1 C0 = 1.5dt 1.5 dt = 0 2 − Z0 Z1 OR By using complex exponential Fourier series 1 2 1 jnπt jnπt Cn = 1.5e− dt 1.5 e− dt 2 − Z0 Z1 2 1 3 jnπt jnπt Cn = e− e 4 jnπ − − 0 − 1 3 jnπ j2nπ jnπ = − e− 1 e− + e− 4 jnπ − − 3 jnπ 3 = 1 e− = [1 cosnπ] 2 jnπ − 2 jnπ − ∞ jnπt x(t) = ∑ Cne− n= ∞ − ∞ 3 jnπ jnπt ∑ π 1 e− e n= ∞ 2 jn − − ∞ 3 jnπt jnπt π = ∑ π e e cos n n= ∞ 2 jn − − 102 Basic System Analysis • for n = 1 π π A A = sin t sin tdt = (1 cos2t)dt 2π 2π − Z0 Z0 A A = [π] = 2π 2 When n is even A 2 2 2A = = 2π n + 1 − 1 n π(1 n2) − − Example 7: x(t) 2 b −3 −2 −1 0 1 2 3 t a −2 T Fig. 2.7. SOLUTION: 2π T = 2 w = = π 0 T 2t 1 < t < 1 x(t) = − 0 Point (a) ( 1, 2) − − Point (b) (1,2) 2 ( 2) y ( 2) = − − (x ( 1)) − − 1 ( 1) − − − − 4 y + 2 = (x + 1) 2 y + 2 = 2x + 2 y = 2x x(t) = 2t Since function is an odd function 1 1 1 an = 0, a0 = 2tdt = 0 = 0 T 2 × Z1 − 1 1 1 2 2 t cosnπt 1 b = t sin (nπt)dt = + cosnπt n − π 2π2 T T n n Z1 1 1 − − − 104 Basic System Analysis • 2.3 CONVERGENCE OF FOURIER SERIES – DIRICHLET CONDITIONS Existence of Fourier Series: The conditions under which a periodic signal can be represented by an F.S. are known as Dirichlet conditions. F.P. Fundamental Period → (1) The function x(t) has only a finite number of maxima and minima, if any within the F.P. (2) The function x(t) has only a finite number of discontinuities, if any within the F.P. (3) The function x(t) is absolutely integrable over one period, that is T x(t) dt < ∞ Z 0 2.4 PROPERTIES OF CONTINUOUS FOURIER SERIES (1) Linearity: If x1(t) and x2(t) are two periodic signals with period T with F.S.C. Cn and Dn then F.C. of linear combination of x1(t) and x2(t) are given by FS[Ax1(t) + Bx2(t)] = ACn + BDn Proof: If z(t) = Ax1(t) + Bx2(t) t0+T 1 A B a = [Ax (t) + Bx (t)]e jnw0t = x (t)e jnw0t dt + x (t)e jnw0t dt n T 1 2 − T 1 − T 2 − tZ0 ZT ZT an = ACn + BDn (2) Time shifting: If the F.S.C. of x(t) are Cn then the F.C. of the shifted signal x(t t0) are − jnw0 t0 FS[x(t t0)] = e− Cn − Let t t0 = τ − dt = dτ 1 jnw0t Bn = x(t t0)e− dt T − ZT 1 jnw (t +τ) 1 jnw τ jnw t = x(τ)e− 0 0 dτ = x(τ)e− 0 dτ e− 0 0 T T · ZT ZT jnw t Bn = e− 0 0 Cn · (3) Time reversal: FS[x( t)] = C n − − 1 1 jnw0t j( n)w0T Bn = x( t)e− dt = x( t)e− − dt T − T − ZT ZT t = τ − dt = dτ − 1 j( n)w0τ = x(τ)e− − dτ = C n T − ZT − 106 Basic System Analysis • Example 8: Compute the exponential series of the following signal.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us