Visualization of Flow Data in Photo-Realistic Virtual Environment

Visualization of Flow Data in Photo-Realistic Virtual Environment

AB TEKNILLINEN KORKEAKOULU Sähkö - ja tietoliikennetekniikan osasto Markku Mantere Visualization of Flow Data in Photo-realistic Virtual Environment Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten Espoossa 4.6.2001 Työn valvoja Professori Tapio Takala Työn ohjaaja Matti Gröhn HELSINKI UNIVERSITY OF TECHNOLOGY Abstract of the Master’s Thesis Author: Markku Mantere Name of the Thesis: Visualization of Flow Data in Photo-realistic Virtual Environment Date: June 4th 2001 Number of pages: 91 Department: Department of Electrical and Communications Engineering Professorship: Tik-111 Interactive Digital Media Supervisor: Professor Tapio Takala Instructor: MSc Matti Gröhn Virtual reality technology has been adopted in many different fields and new application areas are searched continuously. At the moment virtual reality has been applied separately for instance to scientific visualization and illustration of architectural spaces. In this work, a photo-realistic room model and a visualization of an air flow inside the room has been combined. The integrated illustrative three-dimensional model is presented within an immersive virtual environment. The first part of the work covers scientific visualization and virtual reality implementation techniques. The visualization review begins with a discussion about human percepion of visual information and proceeds with an introduction to three-dimensional visualization. The focus is on illustration of a flow data produced as a result of a computational simulation. The flow visualization techniques utilizing all three dimensions are discussed and many examples of different graphical elements are presented. Virtual reality is examined from technical solutions point of view. The features having ef- fect on the quality of a virtual experience are discussed and three different commonly used display techniques are introduced. The hardware of Experimental Virtual Environment -facility at Helsinki University of Technology is given as a detailed example. The implementation of a visualization software is described in the applied part of this thesis. Discussion covers the evaluation of different software tools, the tool selection pro- cess, and a detailed description of the design principles and implementation of the software. The different visualization solutions are also justified in this part. In the implementation, the real-time system requirements and utilization of all three dimensions have been taken into account. Finally, the results and their meaning are discussed and the performance of the implement- ation is evaluated. The applied part successfully integrated the room model and the flow visualization in an interactive virtual environment. Keywords: virtual environments, virtual reality, flow visualization, CFD, 3D, computer graphics TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä Tekijä: Markku Mantere Työn nimi: Visualization of Flow Data in Photo-realistic Virtual Environment Päivämäärä: 4. 6. 2001 Sivumäärä: 91 Osasto: Sähkö- ja tietoliikennetekniikan osasto Professuuri: Tik-111 Vuorovaikutteinen digitaalinen media Valvoja: Professori Tapio Takala Ohjaaja: FK Matti Gröhn Keinotodellisuustekniikkaa on viime vuosina otettu käyttöön monilla eri aloilla ja sille etsitään edelleen jatkuvasti uusia sovellusalueita. Toistaiseksi keinotodellisuutta on sovellettu erik- seen muun muassa tieteelliseen visualisointiin ja arkkitehtonisten tilojen esittämiseen. Tässä työssä on yhdistetty todenmukaiselta näyttävä huonemalli sekä huoneen sisällä tapahtuvan ilmavirtauksen visualisointi. Työssä yhdistetty havainnollinen kolmiulotteinen malli esitetään sisäänsä sulkevan ja kuvan syvyysvaikutelman toteuttavan EVE-keinotodellisuuslaitteiston avulla. Työn ensimmäisessä osassa tarkastellaan tieteellistä visualisointia ja keinotodellisuuden to- teuttamistekniikoita. Visualisointikatsaus alkaa kuvallisen informaation havainnoimisen perus- teista ja esittelee kolmiulotteisen visualisoinnin periaatteita. Lähemmin tutustutaan laskennallisin menetelmin tuotetun virtausdatan esittämiseen kolmiulotteisuutta hyödyntäen sekä esitellään useita virtausdatan visualisointiin soveltuvia graafisia elementtejä. Keinotodellisuutta yleisesti käsittelevässä osassa paneudutaan virtuaalisen kokemuksen laa- tuun vaikuttaviin teknisiin ratkaisuihin sekä esitellään kolme yleisintä keinotodellisuuslaitteis- toissa käytettävää näyttötekniikkaa. Tarkempana esimerkkitoteutuksena käydään läpi TKK:n EVE-laitteisto. Työn soveltavassa osassa kuvataan visualisointiohjelmiston toteutus. Kuvaus kattaa eri oh- jelmistotyökalujen vertailun, valintaperusteet sekä tarkan selvityksen ohjelmiston suunnittelupe- rusteista ja rakenteesta. Myös toteutuksen yhteydessä tehdyt visualisointiratkaisut perustellaan. Toteutuksessa on kiinnitetty erityistä huomiota reaaliaikajärjestelmille asetettaviin vaatimuksiin ja kolmiulotteisuuden hyödyntämiseen. Kirjallisen osan lopussa pohditaan työn tuloksia ja merkitystä sekä arvioidaan toteutetun järjestelmän suorituskykyä. Työn soveltavassa osassa on tavoitteiden mukaisesti yhdistetty onnis- tuneesti huonemalli ja siihen liittyvä virtausvisualisointi. Avainsanat: keinoympäristöt, keinotodellisuus, virtausten visualisointi, CFD, 3D, tietokonegrafiikka Acknowledgments After many years of active and semiactive studies, my master’s thesis is ready. Many people from different organizations have had influence to my work but I would like to express my gratitude especially to following contributors: ¯ My supervisor, Professor Tapio Takala, for making the VR research in TML possible. ¯ My instructor, Matti Gröhn, for valuable guidance and for pushing the project ahead. ¯ Mikko Laakso, my colleague on the BS-CAVE project for sharing with me the pleasant agony of working on master’s thesis. ¯ Seppo Äyräväinen, my another co-worker for providing a lot of comments and com- pany. I would also like to thank my parents, Marjo and Raimo Mantere, for their support on every phase of my life. And finally, thanks to Marika, the challenging love of my life. Otaniemi June 4th 2001 Markku Mantere Contents List of Abbreviations iv List of Figures vii 1 Introduction 1 1.1 BS-CAVE project introduction . .................. 2 1.2 Visualization problem statement . .................. 3 1.3 Criteria .................................... 4 1.4 Thesis Organization . ............................. 6 2 Scientific visualization 7 2.1 Visualization in general . ......................... 7 2.1.1 Purpose of visualization . .................. 7 2.1.2 Amplifying cognition ......................... 8 2.1.3 Reference model for data visualization . ........... 9 2.1.4 Computerized visualization . .................. 10 2.2 3-D visualization . ............................. 12 2.3 Visualization of flow data . ......................... 12 2.3.1 Numerical methods and CFD . .................. 12 2.3.2 The nature of flow data . .................. 14 2.3.3 Techniques for visualizing 3D-flows . ........... 15 3 Virtual reality 20 3.1 Techniques for creating immersion . .................. 20 i 3.1.1 VR display types . ......................... 26 3.2 EVE - Experimental Virtual Environment .................. 30 4 Implementation 34 4.1 Requirements for virtual reality application in the BS-CAVE project .... 34 4.2 Potential software components . .................. 36 4.2.1 Importance of right tools . .................. 36 4.2.2 DIVA and LibR . ......................... 37 4.2.3 Getting closer - Avango . .................. 38 4.2.4 Evaluating several alternatives . .................. 38 4.2.5 Solving the puzzle . ......................... 41 4.3 Software tools in implementation . .................. 42 4.3.1 VTK - Visualization Toolkit . .................. 42 4.3.2 IRIS Performer . ......................... 44 4.3.3 vtkActorToPF ............................. 47 4.3.4 VR Juggler . ............................. 48 4.4 Architectural models ............................. 51 4.5 WolfViz - The software family . .................. 53 4.5.1 The chosen visualization techniques . ........... 53 4.5.2 EnsightToVTK - CFD-data conversion . ........... 62 4.5.3 Previz - From numbers to visual objects . ........... 64 4.5.4 Postviz - Interaction ......................... 74 5 Results and evaluation 78 5.1 Mixing the visible and the invisible . .................. 78 5.2 Performance . ............................. 79 5.3 Problems and challenges . ......................... 80 6 Conclusions 82 6.1 Status quo................................... 83 6.2 Future work . ............................. 83 ii Bibliography 85 iii List of Abbreviations 2D Two-dimensional 3D Three-dimensional 3DSMax 3D Studio Max - 3D animation and modeling software AI Artificial Intelligence ALSA Advanced Linux Sound Architecture ANSI American National Standards Institute API Application Programming Interface ASCII American Standard Code for Information Interchange AVS Advanced Visual Systems - visualization software BMP Bitmap file format BS Building Services CAD Computer Aided Design CAVE Cave Automated Virtual Environment, registered trademark of University of Illinois Board of Trustees CFD Computational Fluid Dynamics CRT Cathode Ray Tube DOF Degrees Of Freedom EVE Experimental Virtual Environment FEM Finite Element Method FOV Field of View GUI Graphical User Interface HMD Head Mounted Display HUT Helsinki University of Technology IEEE Institute of Electrical and Electronics Engineers IRIX Operating system used in SGI’s computers IV Open Inventor file format JVP VR Juggler Virtual Platform iv

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    99 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us