Tensor Review

Tensor Review

Engineering Tensors A BEH430 review session by Thomas Gervais [email protected] References: • Long, RR, Mechanics of Solids and Fluids, Prentice-Hall, 1960, pp 1-32 • Deen, WD, Analysis of transport phenomena, Oxford, 1998, p. 551-563 • Goodbody, AM, Cartesian tensors: With applications to Mechanics, Fluid Mechanics and Elasticity, John Wiley & Sons, 1982 Friday November 16, 2001 16h30 -Muddy Charles Scalars, Vectors & Tensors Scalar: Quantity that is invariant in itself (does not depend on any referential) Also known as a zeroth order tensor. Ex: mass (non relativistic referentials), Temperature, Energy, Concentration Vector: Quantity that possess both a direction and a magnitude located somewhere in space. It is a first vorder tensor. v =a1eˆ1 + a2eˆ2 + a3eˆ3 = a'1 eˆ'1 +a'2 eˆ'2 +a'3 eˆ'3 Note: A vector possessesv two invariants with respect to coordinate space: Its magnitude, v , and its direction. Ex: Force, Electric field, Flux Higher order tensors 2nd order tensor: An ordered set of nine numbers, each of which possessing 2 directions. An helpful analogy would be to imagine a vector whose three components each would be a vector. A tensor of order n can be reprensented by 3n numbers in tridimensional space. It is a matrix of dimension n. A 2nd possesses 3 invariants which are the coefficients of its characteristic polynomial arising from det T - l I = 0 . The trace and the determinant of the tensor are two of its 3 invariants. In general, a tensor of order n will have n+1 invariants. Physical applications of tensors: Discipline Phenomenon Quantity Example Physics: E-M Light transmission in Refraction index n Optically active anisotropic media polarizers Dynamics Angular momentum Moment of Inertia I Gyroscope Fluid mechanics Hindered transport in Effective Ca++ diffusion in porous media permeability K muscles Solid mechanics Tensile properties of Young’s modulus E Duct Tape, anisotropic solids Muscles Dyadic Product (Tensor Product) This the general form of a tensor product: Scalar A (0th order tensor) v v v v A = A e + A e + A e Vector 1 1 2 2 3 3 (1st order tensor) v v v v v v v v A = A e + A e + A e A = A e + A e + A e 2nd order 1 11 1 21 v2 31 3 3 13 1 23 2 33 3 v v v tensor A2 = A12e1 + A22e2 + A32e3 etc. 3 3 • By dividing the Aij in three vector components, A = A eˆ eˆ we get a 3rd order tensor, and so on... å å ij i j i=1 j =1 Notation z z’ v v 3 3 A A = å Aieˆi = å A'i eˆ'i i=1 i=1 y The projection of the vector on the axis, x, y, z can each be decomposed in the basis (x’, y’, z’). The relation y’ between each of the components is then given by: x’ x 3 = Ax = a11A'x + a21A' y + a31A'z Ai å aij A' j j =1 Ay = a12 A'x + a22 A' y + a32 A'z Az = a13A'x + a23A' y + a33A'z Ai = aij A' j (Einstein’s notation) é a a a ù 3 3 11 12 13 ê ú a = a eˆ eˆ = a a a å å ij i j ê 21 22 23ú i=1 j =1 ëê a31 a32 a33ûú Dot and Cross products Definition of dot product: v v 3 3 3 3 3 3 3 A× B = å Aieˆi × å B jeˆ j = å å AiB j eˆi × eˆ j = å å AiB j d ij = å AiBi i=1 j =1 i=1 j =1 i=1 j =1 i=1 nd Where dij is the Kronecker delta, a 2 order tensor. Does it hold in tensor notation? 3 Let’s test it using a change of coordinate: Ai = å aij A' j j =1 v v 3 3 3 3 3 3 3 3 A × B = å å aki A'k eˆk × å å alj B'l eˆl = å å å å akialj A'k B'l d kl i=1 k =1 j= 1 l=1 i=1 j =1 k =1 l=1 If what we said about the conservation of the magnitude of a vector from v v 3 3 one cartesian referential to another, then A× B = å Ai Bi = å A' k B' k i=1 k =1 For this to be true, we need: d ij = akialjd kl (Einstein notation) Dot and Cross product (cont.) d ij = akialjd kl expanded yields: 2 2 2 a11 + a12 + a13 = 1 a21a31 + a22 a32 + a23a33 = 0 2 2 2 a21 + a22 + a23 = 1 a31a11 + a32 a12 + a33a13 = 0 2 2 2 a31 + a32 + a33 = 1 a11a21 + a12a22 + a13a23 = 0 These are the normalization and the orthogonality conditions that any orthonormal base respects. Definition of cross product: v v 3 3 3 3 3 3 3 A× B = å Aieˆi ´ å B jeˆ j = å å AiB j eˆi ´ eˆ j = å å å AiBj e ijkeˆk i=1 j =1 i=1 j =1 i=1 j=1 k =1 Where e ijk is called the Levi-Civita density and is the cross product equivalent of the Kroneker delta, d ij , for the dot product. It is a third order tensor. 0, i=j, j=k, or i=k This is the famous e ijk 1, ijk= 123, 231, 312 “right hand rule” -1, ijk= 132, 321, 213 Gradients and Divergence v v 3 ¶f 3 We know: Ñ f = å eˆj and A = å Aieˆi ¶ j =1 x j v iv=1 Q: What about the gradient of a vector Ñ A ? A: The generalizationv of a vector provided by tensor analysis implies: v v 3 ¶ A 3 3 ¶A i A second order tensor! Ñ A = å eˆ j = å å eˆieˆj j =1 ¶ x j i=1 j=1 ¶ x j • The gradient of a tensor increases its order by one Q: What about the divergence of a 2nd order tensor? A: Using our definition of the dot product: v 3 3 ¶ 3 Tij ¶Tii Ñ × T = å å d ijeˆieˆ j = å eˆi A vector! i=1 j=1 ¶ x j i=1 ¶xi • The divergence of a tensor decreases its order by one Practical problem: How to set up a tensor from physical reasoning? Consider the following problem: We want to stretch a piece of anisotropic tissue and find the components of the Young’s Moduli v v E2 F F E1 q Apply a given displacement and compute the force as a function of the angle (assuming constant strain and a Poisson coefficient of “0”) v 2 y' v 2 2 2 u = u eˆ å i i F = å Fieˆ'i = å å Eijuieˆj i=1 E2 x' i=1 i=1 j =1 E1 y q é F1 ù é E11 E12 ù é u1 ù x ê ú = ê ú ê ú ë F2 û ë E21 E22 û ëu2 û Practical problem: How to set up a tensor from physical reasoning? (cont.) We need to compute the 4 matrix elements: • F1 ® u1 : E11 = Ex cosq • F1 ® u2 : E12 = Ex sin q é F1 ù é Ex cosq Ex sinq ù é u1 ù = ê ú • F ® u : E = - E sin q ê ú - q q ê ú 2 1 21 y ë F2 û ë E y sin Ey cos û ëu2 û • F2 ® u2 : E22 = E y cosq We are measuring the magnitude of the force required to impose a unity displacement in the x direction. 2 v 1.8 é F ù é1ù x' 2 2 1.6 = [Eij ] Þ F = F + F ê ú ê ú x ' y ' 1.4 Fy' ë0û ë û 1.2 Effective modulus v 1 0 0.5 1 1.5 F angle (rad) = E = E 2 cos2 q + E 2 sin 2 q u eff x y Normalized effective modulus as a function of the angle for E2 double of E1 Same problem: other approach using tensors v v 2 y' 2 2 2 F = F eˆ' = E' u' eˆ' u = å uieˆi å i i å å ij j j i=1 i=1 j=1 i=1 E2 x' E1 é E1 0 ù y E'ij = ê ú q ë 0 E2 û x 2 u'i eˆ'i = aiju jeˆ j å v 2 2 j =1 F = å å E'ij aiju jeˆ j é cosq sinq ù i=1 j =1 aij = ê ú ë - sin q cosq û Q: Are expressions equivalent, i.e. E'ij aij = Eij ? E 0 cosq sinq E cosq E sin q é 1 ù é ù é 1 1 ù A: Yes! E'ij aij = ê ú ê ú = ê ú ë 0 E2 û ë - sin q cosq û ë - E2 sinq E2 cosq û Fluid mechanics: The stress and rate of strain tensors v 3 vz' A) Stress tensor y' S = å Sieˆi v n i=1 z S x' 3 v = × ˆ ˆ y Si å n (Siei )e j j=1 x Stress vector v B) Rate of strain tensor Sij = s ij = n × (Sieˆi )eˆieˆ j v v v v v v(r,t) v(r + d r,t) By Taylor expansion to the first order: v v v v v v v v v v v t v = v(r,t) + d v d v = d r × Ñ v(r,t) = (Ñ v(r,t)) × d r v v v Ñ v(r,t)is a tensor (gradient of a vector)! v v v v & 1 t v v e = [(Ñ v) + (Ñ v)] t & 2 (Ñv ) = e + x v v v v & 1 t x = [(Ñ v) - (Ñ v)] Vorticity tensor 2 Conclusion • 2nd order tensors establish relation between two sets of vectors.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us