Prediction Error Methods and Pseudo-Linear Regressions

Prediction Error Methods and Pseudo-Linear Regressions

System Identification Lecture 10: Prediction error methods and pseudo-linear regressions Roy Smith 2016-11-22 10.1 Prediction e k p q H z p q v k y k p q u k p q G z p q ` p q Typical assumptions G z and H z are stable, p q p q H z is stably invertible (no zeros outside the unit disk) p q e k has known statistics: known pdf or known moments. p q One-step ahead prediction Given ZK u 0 , y 0 , . , u K 1 , y K 1 , “ t p q p q p ´ q p ´ qu what is the best estimate of y K ? p q 2016-11-22 10.2 Prediction v k e k p q H z p q p q Noise model invertibility Given, v k , k 0,...,K 1, can we determine e k , k 0,...,K 1? p q “ ´ p q “ ´ 8 Inverse filter: Hinv z : e k hinv i v k i p q p q “ i 0 p q p ´ q ÿ“ We also want the inverse filter to be causal and stable: 8 hinv k 0, k 0, and hinv k . p q “ ă k 0 | p q| ă 8 ÿ“ If H z has no zeros for z 1, then, p q | | ě 1 Hinv z . p q “ H z p q 2016-11-22 10.3 Prediction v k e k p q H z p q p q One step ahead prediction Given measurements of v k , k 0,...,K 1, can we predict v K ? p q “ ´ p q Assume that we know H z , how much can we say about v K ? p q p q Assume also that H z is monic (h 0 1). p q p q “ 8 v k h i e k i p q “ i 0 p q p ´ q ÿ“ 8 e k h i e k i “ p q ` i 1 p q p ´ q ÿ“ m k 1 “ p ´ q loooooooomoooooooon“observed” 2016-11-22 10.4 Prediction v k e k p q H z p q p q One-step ahead prediction The prediction of v k , based on measurements up to time k 1 is, p q ´ vˆ k k 1 . p | ´ q We will argue that a good choice in this case is, 8 vˆ k k 1 m k 1 h i e k i . p | ´ q “ p ´ q “ i 1 p q p ´ q ÿ“ The error in our prediction is e k — which we clearly can’t reduce. p q 2016-11-22 10.5 One-step prediction statistics General case Say e k is identically distributed with pdf: fe x , p q p q x δx ` Prob x e k x δx fe x dx fe x δx. t ď p q ď ` u “ p q « p q żx A posteriori distribution k 1 What are the statistics of v k given v ´ v , . , v k 1 ? p q ´8 “ t p´8q p ´ qu k 1 Prob x v k x δx v ´ t ď p q ď ` | ´8 u “ Prob x e k m k 1 x δx “ t ď p q ` p ´ q ď ` u Prob x m k 1 e k x m k 1 δx “ t ´ p ´ q ď p q ď ´ p ´ q ` u fe x m k 1 δx. « p ´ p ´ qq 2016-11-22 10.6 One-step ahead prediction statistics Maximum of the conditional (a posteriori) distribution Select the prediction estimate as the peak value of the conditional distribution: vˆ k k 1 argmax fe x m k 1 p | ´ q “ x p ´ p ´ qq m k 1 for the Gaussian case. “ p ´ q This is the most probable value of v k k 1 . p | ´ q Mean of the conditional distribution Select the prediction estimate as the mean value of the conditional distribution: k 1 vˆ k k 1 E v k v ´ E e k m k 1 p | ´ q “ t p q| ´8 u “ t p q ` p ´ qu m k 1 E e k m k 1 . “ p ´ q ` t p qu “ p ´ q This is the expected value of v k k 1 . p | ´ q 2016-11-22 10.7 One-step ahead prediction Calculation 8 vˆ k k 1 m k 1 h i e k i p | ´ q “ p ´ q “ i 1 p q p ´ q ÿ“ H z 1 e k (assuming H z is monic) “ p p q ´ q p q p q H z 1 p q ´ v k “ H z p q p q 1 Hinv z v k “ p ´ p qq p q 8 hinv i v k i “ ´ i 1 p q p ´ q ÿ“ Note that vˆ k k 1 depends only on values up to time k 1. p | ´ q ´ The best we can do is: k 8 vˆ k k 1 hinv i v k i hinv i v k i . p | ´ q “ ´ i 1 p q p ´ q « ´ i 1 p q p ´ q ÿ“ ÿ“ 2016-11-22 10.8 Example Moving average model 1 v k e k ce k 1 , H z 1 cz´ . p q “ p q ` p ´ q ùñ p q “ ` For H z to be stably invertible we require c 1. p q | | ă 1 8 i i H z c z´ . inv 1 cz 1 p q “ ´ “ i 0p´ q ` ÿ“ One-step ahead predictor 8 i vˆ k k 1 1 Hinv z v k c v k i p | ´ q “ p ´ p qq p q “ ´ i 1p´ q p ´ q ÿ“ k c iv k i « ´ i 1p´ q p ´ q ÿ“ cv k 1 c2v k 2 c3v k 3 c kv 0 . “ p ´ q ´ p ´ q ` p ´ q ` ¨ ¨ ¨ ´ p´ q p q 2016-11-22 10.9 Example Moving average model 1 v k e k ce k 1 , H z 1 cz´ . p q “ p q ` p ´ q ùñ p q “ ` Recursive formulation Note that, H z vˆ k k 1 H z 1 v k p q p | ´ q “ p p q ´ q p q So, vˆ k k 1 cvˆ k 1 k 2 cv k 1 p | ´ q ` p ´ | ´ q “ p ´ q vˆ k k 1 c v k 1 vˆ k 1 k 2 p | ´ q “ p p ´ q ´ p ´ | ´ qq k 1 (prediction error at k 1) p ´ q ´ c looooooooooooooooomooooooooooooooooonk 1 “ p ´ q 2016-11-22 10.10 Another example Autoregressive noise model Our noise model is: 8 v k aie k i a 1 for stability. p q “ i 0 p ´ q | | ă ÿ“ 8 i i 1 So, H z a z´ , 1 az 1 p q “ i 0 “ ´ ÿ“ ´ 1 and Hinv z 1 az´ (a moving average process) p q “ ´ Our one-step ahead predictor is, vˆ k k 1 1 Hinv z v k av k 1 . p | ´ q “ p ´ p qq p q “ p ´ q 2016-11-22 10.11 Output prediction e k p q H z y k G z u k v k p q p q “ p q p q ` p q v k y k p q u k p q G z p q ` p q One-step ahead prediction Maximise the expected value of the conditional distribution, yˆ k k 1 E y k ZK G z u k vˆ k k 1 p | ´ q “ t p q| u “ p q p q ` p | ´ q G z u k 1 Hinv z v k “ p q p q ` p ´ p qq p q Hinv z G z u k 1 Hinv z y k “ p q p q p q ` p ´ p qq p q 2016-11-22 10.12 Output prediction e k p q H z y k G z u k v k p q p q “ p q p q ` p q v k y k p q u k p q G z p q ` p q Prediction error y k yˆ k k 1 Hinv z G z u k Hinv z y k p q ´ p | ´ q “ ´ p q p q p q ` p q p q Hinv z y k G z u k Hinv z v k “ p qp p q ´ p q p qq “ p q p q e k “ p q The innovation is the part of the output prediction that cannot be estimated from past measurements. 2016-11-22 10.13 Prediction error based identification The one-step ahead predictor is parametrised by θ, yˆ k θ, ZK Hinv θ, z G θ, z u k 1 Hinv θ, z y k p | q “ p q p q p q ` p ´ p qq p q Define a parametrised prediction error, k, θ y k yˆ k, θ , p q “ p q ´ p q which we can optionally filter, F k, θ F z k, θ (weighted error). p q “ p q p q Define a cost function, K 1 1 ´ J θ, Z l k, θ typically l k, θ k, θ . K K F F F 2 p q “ k 0 p p qq p p qq “ } p q} ÿ“ θˆ argmin J θ, ZK . “ θ p q 2016-11-22 10.14 Prediction error methods: ARX models e k p q B θ, z G θ, z p q , p q “ A θ, z 1 p q A θ, z 1 p q H θ, z , A θ, z v k p q “ p q p q y k B θ, z u k p q p q p q ` A θ, z p q yˆ k θ Hinv θ, z G θ, z u k 1 Hinv θ, z y k p | q “ p q p q p q ` p ´ p qq p q B z u k 1 A z y k “ p q p q ` p ´ p qq p q θT φ k φT k θ.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us