Machine Learning Lens AWS Well-Architected Framework Machine Learning Lens AWS Well-Architected Framework

Machine Learning Lens AWS Well-Architected Framework Machine Learning Lens AWS Well-Architected Framework

Machine Learning Lens AWS Well-Architected Framework Machine Learning Lens AWS Well-Architected Framework Machine Learning Lens: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Machine Learning Lens AWS Well-Architected Framework Table of Contents ........................................................................................................................................................ v Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Definitions ......................................................................................................................................... 2 Machine Learning Stack .............................................................................................................. 2 AI Services ........................................................................................................................ 2 ML Services ....................................................................................................................... 2 ML Frameworks and Infrastructure ....................................................................................... 3 Combining Levels ............................................................................................................... 3 Phases of ML Workloads ............................................................................................................. 3 Business Goal Identification ................................................................................................. 4 ML Problem Framing .......................................................................................................... 4 Data Collection .................................................................................................................. 5 Data Preparation ................................................................................................................ 5 Data Visualization and Analytics .......................................................................................... 6 Feature Engineering ........................................................................................................... 7 Model Training ................................................................................................................... 8 Model Evaluation and Business Evaluation ............................................................................ 9 General Design Principles .................................................................................................................. 11 Scenarios ......................................................................................................................................... 12 Build Intelligent Applications using AWS AI Services ..................................................................... 12 Reference Architecture ...................................................................................................... 13 Adding Sophistication ....................................................................................................... 14 Using AI services with your Data ........................................................................................ 15 Use Managed ML Services to Build Custom ML Models .................................................................. 15 Reference Architecture ...................................................................................................... 16 Managed ETL Services for Data Processing .................................................................................. 17 Reference Architecture ...................................................................................................... 17 Machine Learning on Edge and on Multiple Platforms ................................................................... 18 Reference Architecture ...................................................................................................... 19 Model Deployment Approaches .................................................................................................. 20 Standard Deployment ....................................................................................................... 21 Blue/Green Deployments ................................................................................................... 21 Canary Deployment .......................................................................................................... 23 A/B Testing ..................................................................................................................... 23 The Pillars of the Well-Architected Framework ..................................................................................... 25 Operational Excellence Pillar ...................................................................................................... 25 Design Principles .............................................................................................................. 25 Best Practices .................................................................................................................. 26 Resources ........................................................................................................................ 32 Security Pillar .......................................................................................................................... 32 Design Principles .............................................................................................................. 32 Best Practices .................................................................................................................. 33 Resources ........................................................................................................................ 38 Reliability Pillar ........................................................................................................................ 38 Design Principles .............................................................................................................. 38 Best Practices .................................................................................................................. 38 Resources ........................................................................................................................ 42 Performance Efficiency Pillar ..................................................................................................... 42 Design Principles .............................................................................................................. 42 Best Practices .................................................................................................................. 43 Resources ........................................................................................................................ 45 Cost Optimization Pillar ............................................................................................................ 45 iii Machine Learning Lens AWS Well-Architected Framework Design Principles .............................................................................................................. 45 Best Practices .................................................................................................................. 46 Resources ........................................................................................................................ 50 Conclusion ....................................................................................................................................... 51 Contributors .................................................................................................................................... 52 Further Reading ............................................................................................................................... 53 Document Revisions .......................................................................................................................... 54 Notices ............................................................................................................................................ 55 iv Machine Learning Lens AWS Well-Architected Framework This whitepaper is in the process of being updated. v Machine Learning Lens AWS Well-Architected Framework Abstract Machine Learning Lens - AWS Well- Architected Framework Publication date: April 2020 (Document Revisions (p. 54)) Abstract This document describes the Machine Learning Lens for the AWS Well-Architected Framework. The document includes common machine learning (ML) scenarios and identifies key elements to ensure that your workloads are

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    60 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us