molecules Review New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms Anabela Borges 1,2,3,*, Ana Cristina Abreu 1,3, Carla Dias 1,3, Maria José Saavedra 3, Fernanda Borges 2 and Manuel Simões 1,* 1 LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; [email protected] (A.C.A.); [email protected] (C.D.) 2 CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal; [email protected] 3 CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal; [email protected] * Correspondence: [email protected] (A.B.); [email protected] (M.S.); Tel.: +351-225-084-968 (A.B.); +351-225-081-654 (M.S.) Academic Editor: Marcello Iriti Received: 31 May 2016; Accepted: 29 June 2016; Published: 5 July 2016 Abstract: The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS) signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed. Keywords: antibiotic adjuvants; antibiofilm strategies; multidrug resistance; efflux pump inhibition; metal chelators; plant compounds; quorum sensing inhibition 1. Introduction In their ecosystem, plants are continuously exposed to a wide range of environmental stresses and hostile conditions. Stress factors affecting plant fitness include environmental (abiotic) factors, such as nutrient deficiency, hypoxia/anoxia, drought, salinity, lack of oxygen, adverse temperature fluctuations, high light intensity, and also those factors derived from anthropogenic activities, such as pesticides, pollutants and increased UV radiation [1,2]. Furthermore, several living (biotic) factors are also stress-inducing factors, including bacteria, fungi, viruses, nematodes, insects and herbivore pests [3]. Plants have faced most of their attackers for more than 350 million years. This allowed plants to co-evolve with their natural enemies in a reciprocal evolutionary interaction and to learn how to resist their attacks. Although lacking mobile defender cells and a somatic adaptive immune system comparable to that of animals [4], plants have the ability to recognize pathogen signals or Molecules 2016, 21, 877; doi:10.3390/molecules21070877 www.mdpi.com/journal/molecules Molecules 2016, 21, 877 2 of 41 elicitors and activate immune responses through the reinforcement of the cell wall, the biosynthesis of lytic enzymes, and the production of secondary metabolites and pathogenesis-related proteins [5]. Owing to their sessile lifestyle and this evolutionary arms race, plants have evolved a stunning broad array of chemical defenses formerly referred to as secondary metabolites. These compounds can be either constitutive, stored as inactive forms, or inducible in response to pathogen attack [6]. The former are known as phytoanticipins and the latter as phytoalexins. Phytoanticipins (including saponins, cyanogenic glycosides and glucosinolates) are present in the plant before microorganism attack, or produced after infection from pre-existing precursors [7]. Some phytoanticipins are found at the plant surface while others are present in vacuoles or organelles and are released through a hydrolyzing enzyme after pathogen challenge [8]. Phytoalexins (including terpenoids, glycosteroids, flavonoids and polyphenols) are small molecules (molecular weight < 500) which are both synthesized and accumulated in the plant after the recognition of elicitors derived from exposure to attackers [9]. Besides improving protection against both biotic and abiotic stresses, secondary metabolites are an important source of anticancer, antioxidant, antidiabetic, immunosuppressive, antifungal, anti-inflammatory, antimalarial, anti-oomycete, antibacterial, antifever, antidiabetic, insecticidal, nematicidal, and antiviral agents [10–12]. The use of plants as therapies in traditional medicine is as old as mankind. Understanding how plants defend themselves is essential not only to protect our food supply, but also to take advantage of their rich chemical composition, providing numerous drugs for clinical application. Examples of those therapeutic drugs are glucoside inhibitors of sodium/potassium ATPase, which are used to treat cardiac arrhythmias and certain kinds of heart failure, and the antimalarial drugs quinine and artemisinin [13]. However, there are no plant-derived antibiotics. Actually, it is interesting to note that most of these plant-derived compounds have weak antibiotic activity—several orders of magnitudes weaker than that of common antibiotics produced by bacteria and fungi [14]. However, plants fight infections successfully. The scarcity of infective diseases in wild plants is, per se, an indication of the successful defense mechanisms they developed [9]. It becomes apparent that plants adopt a different paradigm—“synergy”—to control infections. This review aims to provide insights on the rich variety of antimicrobial secondary metabolites (phytochemicals) from plants. Moreover, emphasis will be given to non-antimicrobial compounds, which are able to act synergistically with antimicrobials in order to promote effective defense of the plants. Their biotechnological value as potential candidates in co-therapies with antibiotics to fight multidrug-resistant (MDR) bacteria is highlighted. The main mechanisms involved in biofilm resistance to antibiotics and the use of plant molecules to control biofilms will also be reviewed. 2. Clinical Multidrug-Resistant Bacteria—The Beginning of the Post-Antibiotic Era Antimicrobial agents are arguably the most successful drugs deployed in the 20th century. These drugs are indispensable in many medical treatments such as intensive care, chemotherapy, organ transplantation, care of preterm babies, and surgical procedures, which could not be performed effectively without the availability of effective antibiotics. Their use reduces human mortality and morbidity [15,16]. Today different classes of antibiotics with distinct modes of action are available to fight diverse microorganisms [17]. However, the number of resistant microorganisms, the geographic locations affected by drug resistance, and the breadth of resistance in single organisms are increasing globally. The continued evolution and spread of multiple-antibiotic resistance in human pathogens is an alarming clinical challenge. For example, around 90%–95% of S. aureus strains worldwide are resistant to penicillin and, in most of the Asian countries 70%–80% are also methicillin resistant [9]. Also, Gram-negative bacteria such as Pseudomonas, Acinetobacter, Escherichia, and Enterobacter spp. are rapidly becoming very problematic due to their nosocomial status and expression of MDR phenotypes, which makes the treatment of the infections difficult [18]. This rise in the frequency of resistance among human pathogenic bacteria is a complex problem driven by many interconnected factors, in Molecules 2016, 21, 877 3 of 41 particular the extensive use of antibiotics in both human and veterinary medicine, aquaculture and agriculture [19]. Even more worrying is the fact that bacteria can develop resistance to multiple classes of antibiotics simultaneously [20]. In addition, genetic resistance determinants were also detected in members of microbial communities from natural environments, raising the concern about the risk that those antibiotic resistance reservoirs might constitute to human and ecological heath [21]. Traditional antibiotics are increasingly subject to a decline in bioactivity due to the emergence of MDR bacteria,Molecules 2016 which, 21, 877 makes it imperative to search for alternative treatments [22]. Only3 two of 37 classes of synthetic antibiotics were developed in the past 50 years: fluoroquinolones and oxazolidinones detected in members of microbial communities from natural environments, raising the concern about (linezolid).the risk All that other those similar antibiotic efforts resistance to findreservoirs a new might antibiotic constitute failed, to human which and ecological indicates heath that [21]. there is an extremely lowTraditional probability antibiotics of discovering are increasingly a new subject
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages41 Page
-
File Size-