Chap.5 Thermodynamic Properties of Homogeneous Mixture

Chap.5 Thermodynamic Properties of Homogeneous Mixture

Chap.5 Thermodynamic Properties of Homogeneous Mixture (1) Chemical potential, μi : (為了解決數學上單位之問題) 目的:探討熱力學性質受溶液組成變化之影響 For pure substance: dU=TdS - PdV → d(nU)= Td(nS) - Pd(nV) …state change …… For mixture: d(nU) = Td(nS) - Pd(nV) + ∑ μidn i (a) i d(nH) = Td(nS) - (nV)dP + μ dn 同理 ∑ i i : i …… (b) d(nA) = -(nS)dT - Pd(nV) + ∑ μidn i i …… (c) d(nG) = -(nS)dT + (nV)dP + ∑ μidn i i …… (d) ⎡∂(nU)⎤ μ = 由(a) → i ⎢ ⎥ ∂n i ⎣ ⎦ nS,nV,n j≠i ⎡∂(nH)⎤ μ = 由(b) → i ⎢ ⎥ ∂ni ⎣ ⎦ nS,P,n j≠i ⎡∂(nA)⎤ μ = 由(c) → i ⎢ ⎥ ∂ni ⎣ ⎦T,nV,n j≠i ⎡∂(nG)⎤ μi = 由(d) → ⎢ ⎥ = G i : partial molar Gibbs free ∂ni ⎣ ⎦T,P,n j≠i energy of i 1 Edited by Prof. Yung-Jung Hsu (2) Partial molar property, M i : 偏微性質 M : 溶液總熱力學性質,M=PVTSHUGA。 M i : 物質 i 於純物質狀態下所表現之熱力學性質。 M i : 物質 i 於混合質狀態下所表現之熱力學性質。 Solution behaviors: 1. ideal solution a.體積可加成,V=X1V1+X2V2。 b.混合過程不放熱,ΔH= 0(T=constant) 2. real solution a. 體積不可加成,V≠X1V1+X2V2。(因混合前後分子間吸引 力改變) b. 混合過程放熱,ΔH≠ 0(T≠ constant) 2 Edited by Prof. Yung-Jung Hsu For real solution: V≠X1V1+X2V2 要達到此線性組合,並非該物質單獨存在時所存在時所表現之熱 力學性質 M i ,而是該物質於溶液狀態下所展現之熱力學性質 M i ,則此線性組成關係才會成立 → V = X 1V1 + X 2V2 Define: partial molar property M i : 1 ○ M i 之線性組合關係式 M = ∑ ni M i or M = ∑ X i M i i i 2 ○ 微分式: 因為 M = ∑ ni M i = n1 M 1 + n2 M 2 i ⎡∂M ⎤ ⎛ ∂n ⎞ ⎛ ∂n ⎞ ⎜ 1 ⎟ ⎜ 2 ⎟ ⎢ ⎥ = M 1 ⎜ ⎟ + M 2 ⎜ ⎟ = M 1 ∂n1 ∂n1 ∂n1 ⎣ ⎦ T ,P,n2 ⎝ ⎠T ,P,n2 ⎝ ⎠T ,P,n2 ⎡∂M ⎤ ⎢ ⎥ = M 2 ∂n2 ⎣ ⎦T ,P,n1 ⎡∂M ⎤ M = → i ⎢ ⎥ , M=VSHUGA ∂ni ⎣ ⎦T ,P,n j≠i ⎡∂G ⎤ If M=G帶入,Gi = ⎢ ⎥ = μi ∂ni ⎣ ⎦T ,P,n j ≠i ∵V = nV1 + nV2 , for real solution(1+2) as a function of n2 added into the solution. 3 Edited by Prof. Yung-Jung Hsu (3) Gibbs-Duhem Equation For any homogeneous fluid in a steady-state: 1. M i 線性組合: 因為 M = ∑ ni M i i For a binary A-B solution and consider the Gibbs free energy: → G = nA GA + nB GB For one-mole of solution: G = X A GA + X B GB → d dG = GAdX A + GB dX B + X AdGA + X B dGB -----(1 式) 2.函數分析: 因為 G=G(T, P, nA, nB) 全微分 → ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎜ ⎟ ⎜ ⎟ dG = ⎜ ⎟ dT + ⎜ ⎟ dP + ⎜ ⎟ dnA + ⎜ ⎟ dnB ⎝ ∂T ⎠ P,n ⎝ ∂P ⎠T ,n ∂nA ∂nB ⎝ ⎠T ,P,nB ⎝ ⎠T ,P,nA ⎛ ∂G ⎞ ⎛ ∂G ⎞ = ⎜ ⎟ dT + ⎜ ⎟ dP + GAdnA + GB dnB ⎝ ∂T ⎠ P,n ⎝ ∂P ⎠T ,n For one-mole solution: ⎛ ∂G ⎞ ⎛ ∂G ⎞ dG = ⎜ ⎟ dT + ⎜ ⎟ dP + GA X A + GB X B -----(2 式) ⎝ ∂T ⎠ P,X ⎝ ∂P ⎠T ,X (1式)=(2 式) ∂G ∂G ⎛ ⎞ ⎛ ⎞ dG = ⎜ ⎟ dT + ⎜ ⎟ dP − (X AdGA + X B dGB ) = 0 ⎝ ∂T ⎠ P,X ⎝ ∂P ⎠T ,X → Gibbs‐Duhem Equation ⎛ ∂M ⎞ ⎛ ∂M ⎞ General form: d M = ⎜ ⎟ dT + ⎜ ⎟ dP − ∑ X i d M i = 0 ⎝ ∂T ⎠ P,X ⎝ ∂P ⎠T ,X i (M=VSHUGA) At T, P=constant,∑ X i d M i = 0 i 4 Edited by Prof. Yung-Jung Hsu (4) Partial molar properties 之間的數學關係式 Ex1: H i = U i + PV i Ex2: dG i = -Si dT + V i dP → Partial molar property 與一般熱力學性質具有相同數學關係式 (5) Fugacity(fi),Activity(ai) 目的:解決純物質之 G 於某一情況下所發生之不合理現象。 For pure substance: dG= -SdT+VdP, at constant T → dG=VdP. For ant pure gas i : dGi=VidP(any gas, constant T) RT For ideal gas i : dG = dP = RTdlnP (ideal gas, constant T) i P Because any real gas at P=0 → ideal gas 代入上式 dG = RTdlnP 不合理 → i P=0 P=0 (any gas at P=0, constant T) =RTdln0 ( ) → for any gas at P=0, dG i ≠ RTdlnP 定義: Fugacity(fi)逸壓: dG i = RTdlnf i (constant T) → 為了代替原來真實壓力所定義出之假想壓力即為 Fugacity Summary: ideal gas and constant T : dG i = RTdlnP real gas and constant T : dG i = RTdlnf i f for ideal gas: f = P, i = 1 i P f for real gas: f ≠ P, i ≠ 1 i P for mixture: dG i = RTdlnf i (因為壓力沒有 partial molar pressure) 2 2 dG = RTd ln f → ∫ i ∫ i 1 1 5 Edited by Prof. Yung-Jung Hsu 2 f 2 ΔG i = G − G = RT d ln f = RT ln 2 1 ∫ i 1 f1 ※ if take 1 as the pure state of a material and also view it as the 0 fi standard state, then Gi − Gi, = Gi − G = RT ln pure 0 f i f i Define: Activity, ai ≡ 0 , 上式變為Gi − Gi, = RT ln ai pure f i (6) Activity 1. Raoult’s Law: Consider a binary A-B solution in equilibrium with their vapor at constant T: ※Practically, this is only obeyed for very concentrated A with dilute B in the A-B solution. 2. Henry’s Law If, however, the bond energies A-A and B-B are not equal, the evaporation rate (~vapor pressure) of A and B should be modified. ' 0 re (A) e.g. PA = X A PA = X A K A (Henry’s Law) re (A) ' , where re (A) is evaporation rate of A in A-B re (A) is evaporation rate of pure A KA is Henry’s law constant PA=XAKA → (Henry’s Law) PB=XBKB 6 Edited by Prof. Yung-Jung Hsu 3. Vapor-Pressure V.S. composition plot for A-B: 4. Correlation with activity:γ Consider a species i in the solution in equilibrium with its vapor at constant T: ※ If the vapor of i is ideal gas → fi = Pi (vapor pressure of i ) 0 , and fi, pure = PA (standard vapor pressure) Pi ∴ ai = 0 Pi a. If the component i exhibits Raoultian behavior (ideal solution) 0 → Pi = X i Pi 0 Pi X i Pi As a result, ai = 0 = 0 = X i (Raoult’s law and ideal Pi Pi solution) fi 0 → 0 = X i ⇒ fi = X i fi fi 7 Edited by Prof. Yung-Jung Hsu For example: Fe-Cr alloy at 1600℃ b. If the component i obeys Henry’s law: → Pi = X i Ki Pi X i Ki As a result, ai = 0 = 0 = X i Ki (Henry’s law and ideal Pi Pi solution) For example: Fe-Ni binary alloy at 1600℃ c. Relationship between Henry’s law and Raoult’s Law In a binary system, if one component obeys Henry’s law → another component must follow Raoult’s law (7) To determine M i Consider G in the binary A-B solution system ∵G = f (T, P,nA ,nB ) 全微分 ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎛ ∂G ⎞ ⎜ ⎟ ⎜ ⎟ ⎯⎯⎯→ dG = ⎜ ⎟ dT + ⎜ ⎟ dP + ⎜ ⎟ dnA + ⎜ ⎟ dnB ⎝ ∂T ⎠ p,n ⎝ ∂P ⎠T ,n ∂nA ∂nB ⎝ ⎠T ,P,nA ⎝ ⎠T ,P,nA At constant T and P → dG = GAdnA + GB dnB 8 Edited by Prof. Yung-Jung Hsu For one mole of solution → dG = GAdnA + GB dnB ⎛ ∂G ⎞ ⎛ ∂X ⎞ ⎛ ∂X ⎞ 對 X 微分→ ⎜ ⎟ = G ⎜ A ⎟ + G ⎜ B ⎟ B ⎜ ∂X ⎟ A ⎜ ∂X ⎟ B ⎜ ∂X ⎟ ⎝ B ⎠T ,P ⎝ B ⎠T ,P ⎝ B ⎠T ,P ⎛ ∂G ⎞ ⎜ ⎟ = G − G -----(○1式) ⎜ ∂X ⎟ B A ⎝ B ⎠T ,P 又G = X A GA + X B GB -----(○2式) ⎛ dG ⎞ (○1x X )+○2→ G + X ⎜ ⎟ = X G + X G = G A A ⎜ dX ⎟ A B B B B ⎝ B ⎠T ,P ⎛ dG ⎞ ⎛ dG ⎞ ∴G = G + X ⎜ ⎟ = G − X ⎜ ⎟ B A ⎜ dX ⎟ A ⎜ dX ⎟ ⎝ B ⎠T ,P ⎝ A ⎠T ,P ⎛ dG ⎞ ⎛ dG ⎞ 同理G = G + X ⎜ ⎟ = G − X ⎜ ⎟ A B ⎜ dX ⎟ A ⎜ dX ⎟ ⎝ A ⎠T ,P ⎝ B ⎠T ,P ※ Method1: 代數法 ∴for binary A-B solution system 9 Edited by Prof. Yung-Jung Hsu ※ Method2: 幾何法 d M 由○1→ I A = I B + ----○3 dX A d M 由○2→ I B = M − X A ----○4 dX A d M d M d M → I A = M − X A + = M + (1− X A ) dX A dX A dX A d M d M = M + X B = M − X B dX A dX B 與 Method1 比較→ I A = M A , I B = M B ∴ M A , M B at X A,i 之幾何法求解 (i) 作 M V.S . X A 圖 at X A = X A.i 之切線 (ii) 與 X A = 0 之交點為 I B , X A = 1之交點為 I A (iii) M A = I A , M B = I B ∴ M A = f (X A ) B.C. : X A ≅ 1.0 , M A = M A (pure) ∞ X A = 0 , M A = M B (infinite dilution) M B = f (X A ) 10 Edited by Prof. Yung-Jung Hsu ∞ B.C. : X A ≅ 1.0 , M B = M B (infinite dilution) X B = 0 , M B = M B (pure) (8) Property of mixing ※在相同狀態下(constant T and P ),溶液混和前後其熱力學性質 之差異。 1. Gibbs free energy change: Consider a binary A-B solution, the Gibbs free energy change before and after the formation of solution: M ΔG = GM = G final − Ginitial = GsolutionA−B − GpureA& pureB GsolutionA−B = nA GA + nB GB , G pureA& pureB = nA GA + nB GB GA : Partial molar free energy of solution, GA : molar free energy of pure A M ∴ ΔG = nA (GA − GA ) + nB (GB − GB ) ------(3 式) A Definition: ΔM A = M A − M A pure A 變成 solution 後 A 之性質變化 …... relative partial molar property 相對部分性質 A e.g. ΔGA = GA − GA , M M M ∴ ΔG = nAΔGA − nB ΔGB For solution at constant T: 2 2 dG = RTd ln f ∫∫i i 1 1 11 Edited by Prof. Yung-Jung Hsu f 2 G2 − G1 = RT ln f1 If we take 1 as the pure state of a material and also view it as the fi standard state, 2 as the solution state, then G − G = RT ln = RT ln a i i pure 0 i fi M ∴ GA − GA = RT ln aA = ΔGA 帶入(3 式) M GB − GB = RT ln aB = ΔGB 帶入(3 式) M → ΔG = nA (RT ln a A ) + nB (RT ln aB ) M For one mole of solution → ΔG = RT(X A ln a A + X B ln aB ) …… any solution M For an ideal solution: a A = X A , aB = X B → ΔG = RT(X A ln X A + X B ln X B ) 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us