An Introduction to Optimization Using Genetic/Evolutionary Algorithms

An Introduction to Optimization Using Genetic/Evolutionary Algorithms

An Introduction to Optimization Using Genetic/Evolutionary Algorithms Part 2 Algorithm Overview with Examples Alicia Hofler 03/24/2021 Comparison to Standard Techniques Iterative derivative based method Systematic parameter scan • Local optima • Global optima • Serial • Parallelizable Genetic and Evolutionary Algorithms: • Iterate through generations (new • Capable of locating global optima populations) • Interleave sampling parameter • Do not need/use derivatives space and analyzing objective • Randomness in variable changes values provides a mechanism to escape • Parallelizable local optima Genetic and Evolutionary Algorithms = smart parameter scans 03/24/2021 2 General Processing Flow Select End Yes independent Done condition? variables No Initialize Assign Fitness Select pairs population Evaluate model generation = 0 Crossover and objectives generation ++ Mutation • Fitness • Single-objective algoritHm – Function of objectives – Differential Evolution (DE) (R. Storn & K. Price, J. Global Optimization 11, 1997) – Rank individuals • Multi-objective algoritHms • Selection – Elitist DE (J. Qiang et al, IPAC, 2013) – Fitness-based competition – Non-dominated Sorting Genetic Algorithm II (NSGA-II) (K. Deb, IEEE Trans. • Elitism EvolutionarY Computing 6, 2002) – Preferential treatment for best individuals – Strength Pareto EvolutionarY Algorithm 2 (SPEA2) (E. Zitzler et al., EUROGEN, 2001) 03/24/2021 3 Crossover or Recombination Genetic AlgoritHm Evolutionary AlgoritHm Binary encoded strings Real-valued vectors parent-1 parent-2 parent-1 2-gene parent-2 2-gene 3-element 3-element chromosome chromosome decision vector decision vector 1110 2710 510 4110 1.1 2.2 3.3 5.5 6.6 7.7 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1.1 2.2 3.3 5.5 6.6 7.7 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 ⎡6.6 1.2(4.4)⎤ 2 ⎣ ⎦ 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0.66 2.2 3.3 5.94 6.6 7.7 offspring-1 offspring-2 1110 910 510 5910 offspring-1 2-gene offspring-2 2-gene Probability density function chromosome chromosome (Optionally, swap vector elements) 03/24/2021 4 Mutation Genetic Algorithm Evolutionary Algorithm Binary encoded strings Real-valued vectors 2-gene chromosome 4-element decision vector 1110 2710 1 0 1 1 0 1 1 0 1 1 old 1.1 2.2 3.3 4.4 3.3+0.1 1 0 1 0 0 1 1 0 1 1 new 1.1 2.2 3.4 4.4 1010 2710 Mutated 2-gene chromosome Probability density function 03/24/2021 5 NSGA-II P=Parent population (10) Q=Offspring population (10) R=Combined population (20) 10 Parent Offspring 8 6 f2 4 • Goal: evenly distributed sample of Pareto optimal front estimate 2 • Fixed Parent and Offspring population sizes • Fitness: multi-step 0 • Non-dominated sort into fronts, Fi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 • Crowding distance sort (F3) f1 • Tournament selection for mating pool K. Deb, IEEE Trans. Evolutionary Computing 6, 2002 K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, 2001 03/24/2021 6 SPEA2 t t+1 Archive Archive Archive Population Population Mating Population (20) Pool 3 A(20) • Goal: broad sample of Pareto optimal front estimate Non-Dom(17) • Fixed Population and Archive sizes 2.5 • Fitness: multi-part f f2 – Raw fitness: sum of strengths of individuals that dominate given individual 2 2 (0=non-dominated) – Density: relative closeness to other individuals (further apart better) 1.5 • Archive – Non-dominated individuals 1 – Back fill with fitter dominated individuals 0.6 0.7 0.8 0.9 – Prune on density f1 f1 • Tournament selection for mating pool E. Zitzler, , et al., EUROGEN 2001 03/24/2021 7 Recall Multi-Objective Example 1 Decision space: x2 vs. x1 Search space: f2 vs. f1 (red and blue box and interior) (red and blue structure and interior) 1 3.5 Pareto optimal front 0.8 3 0.6 2.5 2 2 f x x f 2 0.4 2 2 0.2 1.5 0 1 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 x1 f1 Minimize f x ,x = x 1 ( 1 2 ) 1 1 Two conflicting objectives Minimize f x ,x = + x 2 ( 1 2 ) 2 x1 subject to 0.5 x 1 ≤ 1 ≤ Decision variable 0 ≤ x ≤ 1 bounds constraints 2 03/24/2021 8 Optimize Multi-Objective Example 1: Generation 1 1 1 SPEA2 0.8 DE & NSGA-II 0.8 0.6 0.6 2 2 x x x x 2 0.4 2 0.4 0.2 0.2 0 0 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 Population: 64 Parent: 128 x1 x1 Archive: 64 Offspring: 128 3 3 Pareto front: 11 Pareto front: 15 2.5 2.5 2 2 f f 2 2 f2 f2 1.5 1.5 1 1 0.5 0.6 0.7 0.8 0.9 1 S.B. van der Geer & M.J. de Loos, 0.5 0.6 0.7 0.8 0.9 1 S. Bleuler, et al., EMO 2003, 2003 http://www.pulsar.nl/gpt, 2014 f1 f1 03/24/2021 9 Optimize Multi-Objective Example 1: Generation 3 1 1 SPEA2 0.8 DE & NSGA-II 0.8 0.6 0.6 2 2 x x x x 2 0.4 2 0.4 0.2 0.2 0 0 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 x1 x1 3 3 Pareto front: 31 Pareto front: 31 2.5 2.5 2 2 f 2 f 2 f2 f2 1.5 1.5 1 1 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 f1 f1 03/24/2021 10 Optimize Multi-Objective Example 1: Generation 5 1 1 SPEA2 0.8 DE & NSGA-II 0.8 0.6 0.6 2 2 x x x x 2 0.4 2 0.4 0.2 0.2 0 0 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 x1 x1 3 3 Pareto front: 41 Pareto front: 47 2.5 2.5 2 2 f 2 f 2 f2 f2 1.5 1.5 1 1 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 f1 f1 03/24/2021 11 Optimize Multi-Objective Example 1: Generation 7 1 1 SPEA2 0.8 DE & NSGA-II 0.8 0.6 0.6 2 2 x x x x 2 0.4 2 0.4 0.2 0.2 0 0 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 x1 x1 3 3 Pareto front: 64 Pareto front: 71 2.5 2.5 2 2 f 2 f 2 f2 f2 1.5 1.5 1 1 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1 f1 f1 03/24/2021 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us