Neutrino Oscillations

Neutrino Oscillations

Cafe Scientifique Neutrinos Thomas Gajdosik Neutrinos and their Oscillations · Historical Context Thomas Gajdosik · Todays Understanding Faculty of Physics · Meaning of Oscillations Department of Theoretical Physics Cafe Scientifique Neutrinos Thomas Gajdosik Historical Context discoveries in particle physics Cafe Scientifique Neutrinos Thomas Gajdosik Radioactivity u u While working on phosphorescent mate- u u rials Antoine-Henri Becquerel discovers u Radioactivity. He finds traces on photo- u graphic plates that were not exposed to u u light. u u u u u u u u Becquerel u u u Henri Becquerel: Photographic plate showing effects of radioactivity. " u u 1896 u {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u e− the electron . u u u u u u u u J.J. Thomson u u u u u u u u u u u u u u 1897 u {{w I Cafe Scientifique Neutrinos Thomas Gajdosik . e− Transmutation of Chemical Elements . u . u u γ u. u u u u u u u Soddy Rutherford u u u 1901 Frederick Soddy and Ernest Rutherford discovered u that radioactive thorium was converting itself into radium. u u At the moment of realization, Soddy later recalled, he shouted out: "Rutherford, this u is transmutation!" Rutherford snapped back, "For Christ’s sake, Soddy, don’t call it u transmutation. They’ll have our heads off as alchemists." u u 1896 1901 u {{ {w I Cafe Scientifique Neutrinos Thomas Gajdosik . e− Continuous electron spectrum . in radioactive -decay u β . u u γ u. u u u u u u u u u u u 1911 Otto Hahn and Lise Meitner u u observe a continuous spectrum of u electrons coming from radioactive u Meitner Hahn u β-decay. u 1896 1911 u {{ { {w I Cafe Scientifique Neutrinos Thomas Gajdosik . e− Radioactive displacement law . of Fajans and Soddy u . u u γ u. u u u u u u u u Fajans Soddy u u u u 1913 Frederick Soddy and Kazimierz Fajans u formulate independently the radioactive u u displacement law. u u 1896 1913 u {{ { { {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u ep− the proton – the atomic nucleus . u u . u u γ THOMSON fluorescentscreen u. u gold foil u u alpha particle beam u u radiation source (radium) u Rutherford u RUTHERFORD u u u u u u u Geiger Marsden u u u 1896 1914 u {{ { { {{w I Cafe Scientifique Neutrinos Thomas Gajdosik . ep− Stern-Gerlach experiment ! Spin . u . u u γ u. u u u u u Gerlach Stern u u u u u u u u u Uhlenbeck Goudsmit u u u 1897 1922 1925 u {{ { { {{ {w {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u eνp− the neutrino – theory prediction . u u . u u γ u. u . u u . n . Pauli: u u ”neutron” Fermi: ”neutrino” µ− . u u . π . + u e u . u u u u u u u u 1897 1930 1956 u {{{ { { {{ { { {wI ws Cafe Scientifique Neutrinos Thomas Gajdosik Fermi Theory • 1933 Enrico Fermi explained the radioactive beta decay – by coupling charged currents • the same coupling constant . −5 1:16637×10 e− G = describes . F GeV2 – radioactive beta-decay . .. + . ν¯e µ – muon decay . µ− . + . π – charged pion decay . νµ . νµ – neutrino interactions . F but it cannot work for energies bigger than ∼100 GeV 1897 1933 {{{ { { {{ { { { {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u ep− the neutron . u u . u u γ u. u . u u n u. u u Chadwick u u . u u . u u u u u u u 1897 1932 u {{{{ {{{ {{ {{{w I Cafe Scientifique Neutrinos Thomas Gajdosik . u ep− the muon . u u Raby: ”Who ordered that one?” . u u γ u. u Cosmic . Rays u u (10km) . n u. Hess Anderson µ− u . u u u u u u u u u Spark Chamber u u u 1897 1936 u {{{{ {{{ {{ {{{{w I Cafe Scientifique Neutrinos Thomas Gajdosik . ep− Nuclear fusion cycle in the sun . u . u pp-chain u γ .u u 1H 1H 1H 1H . CNO-cycle u u n ν ν . 4 u He 1 H u 1H 2H 1H 1H 2H Weizsäcker u 12C u 15 N 13N γ γ u u 3He 3He 15 O 13C u 14 u N u 1H 1H 1H u 1H Proton Proton Gamma Ray u γ Gamma Ray 4 Neutron Neutron Neutrino u ν Neutrino He Positron Positron Bethe u u 1897 1937-1939 u {{{ { { {{ { { { {{ {{{{w w w I Cafe Scientifique Neutrinos Thomas Gajdosik . u eνp¯− antineutrino . u u Cowan–Reines neutrino experiment . u Savannah River Site u γ u. u . u u n u. u u u . ν¯e from + u reactor ep¯ u . u u used the antineutrino flux from the u nuclear reactors of the Savannah u River Site (South Carolina). u u u u ...1956 u {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u eννp−µ muon neutrino . the Alternating Gradient Synchrotron (AGS) u u . 1962 u u γ Leon Lederman u. u Melvin Schwartz . u Jack Steinberger u n u. u use the pions and kaons of the u u AGS. These dacays produce also . ν¯(anti)neutrinos;e from with a similar setup + u reactor ep¯ u like the Cowan–Reines experiment they . u u detect muons, but no electrons u ) the neutrinos coming from pions and u u kaons have to differ from the neutrinos u coming from the reactors. u u . 1956 1962 u {{w I Cafe Scientifique Neutrinos Thomas Gajdosik . eνp− Solar neutrino flux . the standard solar model (SSM) u . u u γ Around 1964 John Bahcall starts u. u to calculate the flux of neutrinos . u from the nuclear fusion processes in u n u. the sun, searching for all physical u processes that have an impact on u u the possibility to measure their flux . + u in an experiment on earth. ep¯ u . u ) the standard solar model (SSM) u u u u u u u . 1956 1964+ u {{{w I Cafe Scientifique Neutrinos Thomas Gajdosik . epartonsνp¯− / parton model . u Richard Feynman 1969 . u u γ u. u . u u n u. u u u . + u u a hadron is composed of point- ep¯ . u like constituents, called ”par- u tons”. The number of partons de- u pends on the probing energy u u ) parton distribution functions u u u . 1965 1969 u {{{{w I Cafe Scientifique Neutrinos Thomas Gajdosik . ν Homestake experiment . solar neutrino deficit u . u From 1970 to 1994 u γ u. Raymond Davis, Jr., u . measures the flux of u u τ− solar neutrinos using u. u the radio-chemical re- . u action u u . 37 37 − u ν + Cl ! Ar + e u . u but he only finds 1/3 of the flux u d predicted by John Bahcall ! u. u ) solar neutrino deficit u u u u . 1956 1970 till 1994 u { { { {{w {w I Cafe Scientifique Neutrinos Thomas Gajdosik . u ν τ lepton . u u . u u γ u. Martin Perl u . (SLAC-LBL) u u − 1975 τ u. u • using Mark I . (SLAC-LBL Magnetic Detector) u u u . – first 4π-detector u u . • comparing signal u u to background d u. u u u u u . 1956 1975 u { { { {{w {{ I Cafe Scientifique Neutrinos Thomas Gajdosik . u u ± eν− Zp hints for W - and Z-boson . u u u p p . u p u γ u. W u p u pu p u p u . u u . u Weak charged currents were known from u. u neutrino detection. g . u CERN announced the experimental obser- u d vation of weak neutral currents, shortly u. u after they were predicted by the electro- u weak theory of Abdus Salam, Sheldon u Glashow and Steven Weinberg. u u . 1956 1973 u { { { {{u {{{ I Cafe Scientifique Neutrinos Thomas Gajdosik . eν− neutrinoZ oscillations . p 1957 predicted by B. Pontecorvo u p p . u Super Kamiokande (SK) u γ p . announces first experimental u u evidence for atmospheric W p u neutrino oscillations in pu p 1998 u p u . Sudbury Neutrino Ob- u u servatory (SNO) pro- . u u. vides clear evidence of u g . neutrino flavor change in . u solar neutrinos in 2001 u d u. only then the solar neu- u trino puzzle was solved u u Nobel Price 2015 u u . 1957 1998 2001 2015 u {w { { {{ {{{{ {{{w w w I Cafe Scientifique Neutrinos Thomas Gajdosik u tau neutrino Zp Discovery by the DONUT collaboration (E872 Fermilab) u u p p . u p u νγτ u. u W . p u pu p τ− u. p u . u u . t u. u g . u u b u. u u u u u . 1956 2000 u { { { {{ {{{{ {w {{ { I Cafe Scientifique Neutrinos Thomas Gajdosik ”Todays” Understanding in the context of particle physics Cafe Scientifique Neutrinos Thomas Gajdosik How do we distinguish particles? • according to Special Relativity with mass and spin – particles with the same mass and the same spin are the same particles • by spin: a boson is different from a fermion – 4He behaves differently than 3He • by mass: a muon has a differnt mass than an electron – proton and neutron have nearly the same mass ∗ π+ and π− have exactly the same mass • by charge: – proton has a positive charge, the neutron is neutral ∗ π+ and π− have opposite charge F for neutrinos this is all (approximately) the same ! Cafe Scientifique Neutrinos Thomas Gajdosik . eν− Ordering principle: . discreet symmetries • Parity P . u u − − eL eR . – left-handed or right-handed . u u . τ− . • Charge Conjugation C µ− . u u . – particle or antiparticle . u u u . + e . 2 -.1 • Charge Q or Flavour 0 -1 3 3 d .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us