
EVALUATION OF A SUCTION PYROMETER By analytical heat transfer methods SEBASTIAN ZETTERSTRÖM Akademin för ekonomi, samhälle och teknik Kurs: Examensarbete Handledare: Jan Sandberg Kurskod: ERA403 Examinator: Ioanna Aslanidou Ämne: Energiteknik Uppdragsgivare: Konstantinos Kyprianidis, EST Högskolepoäng: 30 hp Datum: 2017-09-18 Program: Civilingenjörsprogrammet i E-post: energisystem [email protected] ABSTRACT Sebastian Zetterström, Master of Science in energy systems, Mälardalens University in Västerås. Abstract of Master’s thesis, submitted 16th of August. Evaluation of a suction pyrometer by heat and mass transfer methods. The aim of the thesis is to evaluate the cooling of a specific suction pyrometer which is designed by Jan Skvaril, doctorate at Mälardalens University. First part is explained how the balances and correlations are performed before being implemented in MATLAB, after this a ANSYS Fluent model is constructed and explained, which is used for the comparison of results. The cooling is performed by using water at an inlet temperature of 10°C and an assumed flue gas temperature of 810°C. Sensitivity analysis are performed to test the stability of the models which yield good results for stability, done by adjusting both flue gas temperature and inlet cooling water temperature which are as well presented for observation. From doing further MATLAB sensitivity analysis which show that the model still performs well and is stable. The resulting cooling water is heated to approximately 24, 8°C and the flue gas is cooled to 22, 4°C, in ANSYS Fluent the answer differs approximately 2°C and results in 20, 4°C which can be considered by looking at the flue gas inlet temperature of 810°C that this can be deemed an insignificant change and can therefore conclude that the comparison between the two platforms match each other good and that calculations can be considered accurate. Keywords: Suction pyrometer, cooling, heat transfer, thermal resistance network, MATLAB, ANSYS Fluent, simulation PREFACE Before you is the dissertation “Evaluation of a suction pyrometer: By heat and mass transfer methods” which is a thesis about evaluating the cooling possibilities of a newly designed suction pyrometer by using water. It is written as a part of graduating from Master of Science in energy systems at Mälardalens University in Västerås. I started writing and working on this thesis in the beginning of January this year. Chose to work with this topic because the subject of heat and mass transfer optimization is an interesting topic. The thesis became available as a project after Jan Skvaril made a new design for a suction pyrometer and distributed by Mälardalens University as an internal project. Chose this topic through an available list presented by Konstantinos Kyprianidis. The research for the thesis was extremely time consuming but has allowed me to gain significant more knowledge of the heat and mass transfer area as well as how CFD simulations are done, and to compare this with results from an analytical model. 1.1 Acknowledgement This would not have been possible without the support and motivation of my handler Jan Sandberg who has helped me a lot with questions and issues I have had in working on this thesis, who deserves a huge thank you for this help and guidance. Would also like to thank Md Lokman Hosain, a doctorate student at MDH who helped me with ANSYS Fluent simulations and the model construction. Want to thank Konstatinos Kyprianidis for his support and motivational spirit. A fellow student Kristoffer Hermansson who helped with MATLAB and allowing me for the use of his flue gas radiation function file. The thesis was made possible by Jan Skvaril who designed the tool and gave his confidence and support in giving me the possibility of working on this thesis, a special thanks to Jan Skvaril. Västerås, 18th of September 2017 Sebastian Zetterström CONTENT 1.1 Acknowledgement ...................................................................................................iii 2 INTRODUCTION .............................................................................................................1 2.1 Background ............................................................................................................. 1 2.1.1 Previous research ............................................................................................ 2 2.2 Problem formulation................................................................................................ 3 2.3 Research question .................................................................................................. 3 2.4 Delimitation .............................................................................................................. 3 2.5 Aim and scope ......................................................................................................... 4 3 INTRODUCTION TO PYROMETERS ..............................................................................4 3.1 Examples of pyrometer types ................................................................................. 4 3.2 Suction pyrometer design ...................................................................................... 5 3.2.1 Seebeck effect and thermocouple design ......................................................... 6 3.3 Water cooling ........................................................................................................... 7 3.4 General calculation and validation method for this type of tool .......................... 7 3.4.1 ANSYS Fluent .................................................................................................. 8 3.4.2 MATLAB .......................................................................................................... 8 4 METHODOLOGY ............................................................................................................8 4.1 Literature study ....................................................................................................... 9 4.2 Calculation pathway ................................................................................................ 9 4.2.1 MATLAB .......................................................................................................... 9 4.3 Heat transfer correlations and balances ...............................................................14 4.3.1 Diameter and radius ........................................................................................15 4.3.2 Thermal resistance network ............................................................................16 4.3.3 Heat balances .................................................................................................18 4.3.4 Water and flue gas properties .........................................................................21 4.3.4.1. Created interpolation formulas .................................................................. 22 4.3.5 Equations for properties ..................................................................................24 4.3.6 Pressure loss calculations ...............................................................................25 4.3.7 Flue gas radiation ...........................................................................................26 4.4 Utilized MATLAB features ......................................................................................28 4.4.1 Utilized loop methods ......................................................................................28 4.4.2 Function ..........................................................................................................28 4.4.3 Data import .....................................................................................................30 4.5 ANSYS Fluent .........................................................................................................32 4.5.1 2D-axisymmetric .............................................................................................33 4.5.2 Geometry ........................................................................................................34 4.5.3 Mesh ...............................................................................................................34 4.5.4 Y-plus(y+) .......................................................................................................36 4.5.5 Solver setup ....................................................................................................37 4.5.6 Fluent results ..................................................................................................38 5 DESCRIPTION OF CURRENT STUDY ......................................................................... 38 5.1 Assumed input and properties ..............................................................................38 5.1.1 Fixed constant values .....................................................................................39 5.1.2 Mesh settings ..................................................................................................40 5.1.3 ANSYS Fluent boundary conditions ................................................................40 5.1.4 Sensitivity analysis settings .............................................................................42 5.1.5 Fuel content ....................................................................................................43 6 RESULTS .....................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages141 Page
-
File Size-