Quantum, Classical and Symmetry Aspects of Max Born Reciprocity

Quantum, Classical and Symmetry Aspects of Max Born Reciprocity

<p>Quantum, Classical and Symmetry Aspects of Max Born Reciprocity </p><p>L.M. Tomilchik </p><p>B.I. Stepanov Institute of Physics, <br>National Academy of Sciences of Belarus </p><p>Minsk, 16–19 May 2017 </p><p>1 / 36 </p><p>Topics </p><p>1 Reciprocal Symmetry and Maximum Tension Principle 2 Maximum Force and Newton gravity 3 Extended Phase Space (QTPH) as a Basic Manifold 4 Complex Lorentz group with Real Metric as Group of <br>Reciprocal Symmetry </p><p>5 One-Particle Quasi-Newtonian Reciprocal-Invariant <br>Hamiltonian dynamics </p><p>6 Canonic Quantization: Dirac Oscillator as Model of <br>Fermion with a Plank mass </p><p>2 / 36 </p><p>Born Reciprocity version </p><p>1 Reciprocity Transformations (RT): </p><p></p><ul style="display: flex;"><li style="flex:1">x<sub style="top: 0.1364em;">µ </sub></li><li style="flex:1">p<sub style="top: 0.1364em;">µ </sub></li><li style="flex:1">p<sub style="top: 0.1364em;">µ </sub></li><li style="flex:1">x<sub style="top: 0.1364em;">µ </sub></li></ul><p>q<sub style="top: 0.1363em;">e </sub></p><p>→</p><p>,</p><p>→ − </p><p>.</p><p></p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.1363em;">e </sub></li><li style="flex:1">p<sub style="top: 0.1363em;">e </sub></li><li style="flex:1">p<sub style="top: 0.1363em;">e </sub></li></ul><p></p><p>2 Lorentz and Reciprocal Invariant quadratic form: </p><p>1</p><p>q<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup></p><p>1</p><p>p<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup><br>S<sub style="top: 0.2811em;">B</sub><sup style="top: -0.3754em;">2 </sup></p><p>=</p><p>x<sup style="top: -0.3754em;">µ</sup>x<sub style="top: 0.1363em;">µ </sub>+ </p><p>p<sup style="top: -0.3754em;">µ</sup>p<sub style="top: 0.1363em;">µ</sub>, η<sub style="top: 0.1363em;">µν </sub>= diag{1, −1, −1, −1} </p><p>3 x<sub style="top: 0.1363em;">µ</sub>, p<sub style="top: 0.1363em;">µ </sub>are quantum-mechanical canonic operators: </p><p>[x<sub style="top: 0.1364em;">µ</sub>, p<sub style="top: 0.1364em;">ν</sub>] = i~η<sub style="top: 0.1364em;">µν </sub></p><p>4 Phenomenological parameter according definition p<sub style="top: 0.1363em;">e </sub>= Mc so that </p><p>q<sub style="top: 0.1363em;">e </sub>= ~/Mc = Λ<sub style="top: 0.1363em;">c </sub>(Compton length). <br>The mass M is a free model parameter. <br>5 Two dimensional constants q<sub style="top: 0.1364em;">e</sub>[length], p<sub style="top: 0.1364em;">e</sub>[momentum] connected by corellation: </p><p>q<sub style="top: 0.1363em;">e</sub>p<sub style="top: 0.1363em;">e </sub>= ~ (Plank constant). </p><p>3 / 36 </p><p>Relativistic Oscillator Equation (ROE) </p><p>Selfreciprocal-Invariant Quantum mechanical Equation: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>2</p><p>∂</p><p>−</p><p>+ ξ<sup style="top: -0.3753em;">µ</sup>ξ<sub style="top: 0.1363em;">µ </sub>Ψ(ξ) = λ<sub style="top: 0.1363em;">B</sub>Ψ(ξ), </p><p>∂ξ<sup style="top: -0.2627em;">µ</sup>∂ξ<sub style="top: 0.1363em;">µ </sub></p><p>where ξ<sup style="top: -0.3299em;">µ </sup>= x<sup style="top: -0.3299em;">µ</sup>/Λ<sub style="top: 0.1363em;">c</sub>. The (ROE) symmetry ≈ U(3, 1). There are solution corresponding linear discrete mass spectrum. </p><p>4 / 36 </p><p>Maximum Tension Principle (MTP) </p><p>The space-time and momentum variables are to be just the same dimentions of a quantity. It is necessary to have the universal constant with dimention: momentum/length, or equivalently: mass/time, energy/time, momentum/time. In reality: MTP [Gibbons, 2002] Gibbons Limit: </p><p>ꢀꢀ<br>ꢁ</p><p>dp dt </p><p>c<sup style="top: -0.3299em;">4 </sup></p><p>Maximum force&nbsp;F<sub style="top: 0.1364em;">max </sub></p><p>==</p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">= F<sub style="top: 0.1364em;">G</sub>, </li></ul><p></p><p>4G<sub style="top: 0.1364em;">N </sub></p><p>max </p><p>ꢁ</p><p>dE </p><p>c<sup style="top: -0.3299em;">5 </sup></p><p>Maximum power&nbsp;P<sub style="top: 0.1363em;">max </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">= P<sub style="top: 0.1363em;">G</sub>. </li></ul><p></p><p>dt </p><p>4G<sub style="top: 0.1363em;">N </sub></p><p>max </p><p>[momentum]/[length] – Universal constant </p><p>p<sub style="top: 0.1363em;">e </sub>q<sub style="top: 0.1363em;">e </sub></p><p>c<sup style="top: -0.3299em;">3 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">æ<sub style="top: 0.1363em;">0 </sub>= </li><li style="flex:1">=</li></ul><p></p><p>[LMT, 1974, 2003] </p><p>4G<sub style="top: 0.1363em;">N </sub></p><p></p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">−2 </li></ul><p></p><p>It is evident: æ<sub style="top: 0.1364em;">0 </sub>= c </p><p>F</p><p>= c </p><p>P</p><p>. All these values are </p><p></p><ul style="display: flex;"><li style="flex:1">max </li><li style="flex:1">max </li></ul><p></p><p>essentially classic (does not contain Plank constant ~). </p><p>5 / 36 </p><p>Born Reciprocity and Gibbons Limit </p><p>Let the parameter a to be some fixed (nonzero!) value of action S. We replace initial Born’s relation </p><p>q<sub style="top: 0.1363em;">e</sub>p<sub style="top: 0.1363em;">e </sub>= ~ by πq<sub style="top: 0.1363em;">e</sub>p<sub style="top: 0.1363em;">e </sub>= a </p><p>without beforehand action discretness supposition. We demand </p><p>the nonzero area S<sub style="top: 0.138em;">fix </sub>= πq<sub style="top: 0.1363em;">e</sub>p<sub style="top: 0.1363em;">e </sub>of the phase plane only. The second suggestion is: </p><p>p<sub style="top: 0.1363em;">e </sub>q<sub style="top: 0.1363em;">e </sub></p><p>c<sup style="top: -0.3299em;">3 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">æ<sub style="top: 0.1363em;">0 </sub>= </li><li style="flex:1">=</li></ul><p></p><p>(universal constant). </p><p>4G<sub style="top: 0.1363em;">N </sub></p><p>6 / 36 </p><p>Now the parameters q<sub style="top: 0.1363em;">e</sub>, p<sub style="top: 0.1363em;">e </sub>are defined separately </p><p></p><ul style="display: flex;"><li style="flex:1">r</li><li style="flex:1">r</li></ul><p></p><p>a</p><p>aæ </p><p>q<sub style="top: 0.1364em;">e </sub>= </p><p>,</p><p>p<sub style="top: 0.1364em;">e </sub>= </p><p>πæ </p><p>π</p><p>Evidently: the phenomenological constants E<sub style="top: 0.1363em;">e </sub>= p<sub style="top: 0.1363em;">e</sub>c [Energy] and t<sub style="top: 0.1363em;">e </sub>= c<sup style="top: -0.3299em;">−1</sup>q<sub style="top: 0.1363em;">e </sub>[time] satisfy the conditions </p><p>E<sub style="top: 0.1363em;">e </sub>t<sub style="top: 0.1363em;">e </sub></p><p>c<sup style="top: -0.3299em;">5 </sup></p><p>E<sub style="top: 0.1363em;">e</sub>t<sub style="top: 0.1363em;">e </sub>= πa, </p><p>= c<sup style="top: -0.3754em;">2</sup>æ = </p><p>4G<sub style="top: 0.1363em;">N </sub></p><p>Under Born’s parametrization </p><p>2MG<sub style="top: 0.1363em;">N </sub>p<sub style="top: 0.1363em;">e </sub>= Mc, q<sub style="top: 0.1363em;">e </sub>= </p><p>= r<sub style="top: 0.1363em;">g</sub>(M) – gravitational radius. </p><p>c<sup style="top: -0.2627em;">2 </sup></p><p>General mass-action correlation </p><p>ac <br>.<br>4πG<sub style="top: 0.1364em;">N </sub></p><p>M<sup style="top: -0.3753em;">2 </sup>= </p><p>It is valid as in classical as in quantum case. Under supposition when a<sub style="top: 0.138em;">min </sub>= h we receive </p><p>s</p><p>hc </p><p>12</p><p>~c </p><p>G<sub style="top: 0.1363em;">N </sub></p><p>M<sup style="top: -0.3753em;">2 </sup>= </p><p>=</p><p>M<sub style="top: 0.2811em;">P</sub><sup style="top: -0.3753em;">2 </sup><sub style="top: 0.2811em;">l </sub></p><p>,</p><p>M<sub style="top: 0.138em;">P l </sub></p><p>=</p><p>– Plank mass. </p><p>4πG<sub style="top: 0.1363em;">N </sub></p><p>7 / 36 </p><p>Maximum <sub style="top: 2.034em;">ꢂ</sub>F<sub style="top: 2.034em;">ꢂ</sub>orce and Modified Newton Gravity </p><p>mM </p><p>r<sup style="top: -0.2626em;">2 </sup></p><p>c<sup style="top: -0.3299em;">4 </sup>2mG<sub style="top: 0.1364em;">N </sub>2MG<sub style="top: 0.1364em;">N </sub></p><p>1</p><p>r<sup style="top: -0.2626em;">2 </sup></p><p>ꢂ&nbsp;ꢂ </p><p>(NG): </p><p>f = G<sub style="top: 0.1364em;">N </sub></p><p>≡</p><p>4G<sub style="top: 0.1363em;">N </sub></p><p></p><ul style="display: flex;"><li style="flex:1">c<sup style="top: -0.2626em;">2 </sup></li><li style="flex:1">c<sup style="top: -0.2626em;">2 </sup></li></ul><p></p><p>p</p><p>r<sub style="top: 0.1363em;">g</sub>R<sub style="top: 0.1363em;">g </sub></p><p>r<sup style="top: -0.2627em;">2 </sup>r<sub style="top: 0.2811em;">0</sub><sup style="top: -0.3299em;">2 </sup></p><p>= F<sub style="top: 0.1363em;">G </sub></p><p>≡ F<sub style="top: 0.1363em;">G </sub></p><p>(r &gt; 0, r<sub style="top: 0.1363em;">0 </sub>= r<sub style="top: 0.1363em;">g</sub>R<sub style="top: 0.1363em;">g</sub>) </p><p>r<sup style="top: -0.2627em;">2 </sup>r<sub style="top: 0.2811em;">0</sub><sup style="top: -0.3299em;">2 </sup></p><p><sup style="top: -0.5511em;">G </sup>r<sup style="top: -0.2627em;">2 </sup></p><p>ꢂꢂꢂ</p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢂ</li></ul><p>ꢂꢂ<br>ꢂꢂꢂ</p><p>max </p><p>ꢂ</p><p>(ModNG): </p><p>f<sup style="top: -0.3753em;">mod </sup>= F </p><p>(r &gt; r<sub style="top: 0.1363em;">0</sub>), </p><p>f<sup style="top: -0.3753em;">mod </sup></p><p>= F<sub style="top: 0.1363em;">G </sub></p><p>ꢂ</p><p></p><ul style="display: flex;"><li style="flex:1">N</li><li style="flex:1">N</li></ul><p>r=r<sub style="top: 0.0848em;">0 </sub></p><p>The corresponding gravitational potential Energy </p><p>r<sub style="top: 0.2812em;">0</sub><sup style="top: -0.3298em;">2 </sup></p><p>mod gr </p><p>U</p><p>= −F<sub style="top: 0.1364em;">G </sub></p><p>r</p><p>possess a minimum under r = r<sub style="top: 0.1363em;">0 </sub></p><p>c<sup style="top: -0.3298em;">4 </sup>2G<sub style="top: 0.1363em;">N </sub></p><p>c<sup style="top: -0.3299em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">√</li><li style="flex:1">√</li></ul><p></p><p>U<sub style="top: 0.2812em;">g</sub><sup style="top: -0.3753em;">m</sup><sub style="top: 0.2812em;">r</sub><sup style="top: -0.3753em;">od</sup>(min) = −F<sub style="top: 0.1364em;">G</sub>r<sub style="top: 0.1364em;">0 </sub>= − </p><p>mM = − mM </p><p>4G<sub style="top: 0.1364em;">N </sub>c<sup style="top: -0.2626em;">2 </sup></p><p>2</p><p>We have dealing (instead of point-like masses) with a pair spacely extended simple massive gravitating objects like the elastic balls or drops with a high surface tension. </p><p>8 / 36 </p><p><strong>r</strong><sub style="top: 0.1843em;"><strong>0 </strong></sub></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>M</strong></li><li style="flex:1"><strong>m</strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>R</strong><sub style="top: 0.189em;"><strong>g </strong></sub></li><li style="flex:1"><strong>r</strong><sub style="top: 0.189em;"><strong>g </strong></sub></li></ul><p></p><p>√</p><p>12</p><p>E<sub style="top: 0.1363em;">rest</sub>(M, m) = Mc<sup style="top: -0.3754em;">2 </sup>+ mc<sup style="top: -0.3754em;">2 </sup>− mMc<sup style="top: -0.3754em;">2 </sup></p><p>9 / 36 </p><p>The whole energy such a “binary” system is as follows: </p><p>√</p><p>1</p><p>E(M, m) = Mc<sup style="top: -0.3753em;">2 </sup>+ mc<sup style="top: -0.3753em;">2 </sup>− mMc<sup style="top: -0.3753em;">2 </sup></p><p>2</p><p>ꢃr<br>ꢄ</p><p>12</p><p>µ</p><p>= (M + m)c<sup style="top: -0.3753em;">2 </sup>1 − </p><p>,<br>M + m </p><p>where µ = mM/(m + M). <br>Mc<sup style="top: -0.3753em;">2</sup>, mc<sup style="top: -0.3753em;">2</sup>, (M + m)c<sup style="top: -0.3753em;">2 </sup>– rest energy </p><p>p</p><p>√</p><p>12<br>12</p><ul style="display: flex;"><li style="flex:1">∆E = </li><li style="flex:1">µ(M + m)c<sup style="top: -0.3753em;">2 </sup>= </li></ul><p></p><p>mMc<sup style="top: -0.3753em;">2 </sup>– energy corresponding </p><p>√</p><p>12</p><p>the “mass defect” ∆m = </p><p>mM </p><p>10 / 36 </p><p>“Gravitational fusion” picture </p><p>[eliminated energy] </p><p>∆E </p><p>(M + m)c<sup style="top: -0.2626em;">2 </sup></p><p>λ = </p><p>=1</p><p>[rest energy] </p><p></p><ul style="display: flex;"><li style="flex:1">√</li><li style="flex:1">√</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">mM </li><li style="flex:1">δ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">2(M + m) </li><li style="flex:1">2 1 + δ </li></ul><p></p><p>where </p><p>m</p><p>M<sub style="top: 0.138em;">min </sub>M<sub style="top: 0.1363em;">max </sub></p><p></p><ul style="display: flex;"><li style="flex:1">δ = </li><li style="flex:1">,</li></ul><p>δ<sub style="top: 0.1363em;">0 </sub>6 δ 6 1, δ<sub style="top: 0.1363em;">0 </sub>= <br>M</p><p>∆E<sub style="top: 0.138em;">eliminated </sub></p><p>14</p><p>Maximum λ<sub style="top: 0.1363em;">max </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>E<sub style="top: 0.1363em;">rest </sub></p><p>under δ = 1&nbsp;(m = M) </p><p>Such a “fusion” of two equal rest mass M lead to mass = 3M/2, the Energy ∆E = Mc<sup style="top: -0.3299em;">2</sup>/2 eliminate (3 : 1). </p><p>11 / 36 </p><p>Extended Phase Space as a Basic Manifold </p><p>Space of states (QTP) and Energy (H) (sec [J. Synge, 1962]) in general: 2 + 2N dimensions. The metric is </p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">}| </li><li style="flex:1">z</li><li style="flex:1">{</li></ul><p></p><p>η<sub style="top: 0.1364em;">AB </sub>= diag{1, −1, −1, . . . , −1} </p><p>(X, Y ) – pair of conjugated pseudoeuclidean vectors X<sub style="top: 0.1364em;">A</sub>, Y<sub style="top: 0.1364em;">A</sub>, </p><p>A, B&nbsp;= 0, 1, . . . , N&nbsp;(N + 1 dimention). </p><p>The Poisson brackets for ϕ(X, Y ), f(X, Y ), </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>N</p><p>X</p><p>∂ϕ ∂f <br>∂X<sup style="top: -0.2627em;">k </sup>∂Y<sub style="top: 0.138em;">k </sub><br>∂ϕ ∂f <br>∂Y <sup style="top: -0.2627em;">k </sup>∂X<sub style="top: 0.138em;">k </sub><br>{ϕ, f}<sub style="top: 0.2687em;">A,B </sub></p><p>=</p><p>−</p><p>k=0 </p><p>so that </p><p>{X<sub style="top: 0.1363em;">A</sub>, Y<sub style="top: 0.1363em;">A</sub>}<sub style="top: 0.2687em;">A,B </sub>= η<sub style="top: 0.1363em;">AB </sub></p><p>12 / 36 </p><p>Dynamic System in (QT, P H) is defined, when the Energy Surface (2N + 1 dimention) </p><p>Ω(X, Y ) = 0 </p><p>is defined. Solving this equation on Y<sub style="top: 0.1363em;">0 </sub>we obtain Energy </p><p>equation </p><p>Y<sub style="top: 0.1363em;">0 </sub>= F (X<sub style="top: 0.138em;">k</sub>, Y<sub style="top: 0.138em;">l</sub>, X<sub style="top: 0.1363em;">0</sub>) k, l = 1, 2, . . . , N </p><p>The corresponding Hamilton function of the System is by def: </p><p>H ≡ Y<sub style="top: 0.1364em;">0 </sub>= H (X<sub style="top: 0.138em;">k</sub>, Y<sub style="top: 0.138em;">l</sub>, Y<sub style="top: 0.1364em;">0</sub>) </p><p>We shall consider (2 + 2 · 3) – dimensional version (QT, P H) </p><p>A, B&nbsp;→ µ, ν&nbsp;= 0, 1, 2, 3, η<sub style="top: 0.1364em;">µν </sub>= diag{1, −1, −1, −1}, </p><p>X<sub style="top: 0.1364em;">µ</sub>, X<sub style="top: 0.1364em;">µ </sub>are real 4-dimensional pseudoeuclidean SO(3, 1) – vectors. </p><p>13 / 36 </p><p>Complexification of (QT, P H) </p><p>Let us introduce the complex 4-vector Z<sup style="top: -0.3299em;">µ </sup>according definition: </p><p>Z<sup style="top: -0.3753em;">µ </sup>= X<sup style="top: -0.3753em;">µ </sup>+ iY <sup style="top: -0.3753em;">µ</sup>, η<sub style="top: 0.1363em;">µν </sub>= diag{1, −1, −1, −1} </p><p>and define the real norm </p><p>Z<sup style="top: -0.3753em;">µ</sup>Z<sub style="top: 0.2811em;">µ</sub><sup style="top: -0.3753em;">∗ </sup>= Z<sup style="top: -0.3753em;">µ</sup>η<sub style="top: 0.1363em;">µν</sub>Z<sup style="top: -0.3753em;">µ∗ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>= |Z<sub style="top: 0.1363em;">0</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">1</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">2</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">3</sub>| = inv </p><p>14 / 36 </p><p>Complex Lorentz Group with a real metric <br>(Barut Group [Barut 1964]) </p><p>The group of 4 × 4 complex matrices Λ of transformations </p><p>Z<sup style="top: -0.3754em;">0 </sup>= ΛZ, Z&nbsp;= X + iY </p><p>satisfying the condition <br>ΛηΛ<sup style="top: -0.3753em;">† </sup>= η, († – hermitien conjugation) </p><p>¯</p><p>Notice: the diagonal matrices Λ<sub style="top: 0.1363em;">R </sub>and Λ<sub style="top: 0.1363em;">R </sub>∈ (BG) </p><p>Λ<sub style="top: 0.1364em;">R </sub>= −iI<sub style="top: 0.1364em;">4 </sub>= −idiag{1, 1, 1, 1} </p><p>and </p><p></p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">Λ<sub style="top: 0.1363em;">R </sub>= −iη<sub style="top: 0.1363em;">µν </sub>= −idiag{1, −1, −1, −1} </li></ul><p></p><p>Metric invariant (no positive-defined) </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>Z<sup style="top: -0.3754em;">µ</sup>Z<sub style="top: 0.2811em;">µ</sub><sup style="top: -0.3754em;">∗ </sup>= |Z<sub style="top: 0.1363em;">0</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">1</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">2</sub>| −&nbsp;|Z<sub style="top: 0.1363em;">3</sub>| = inv </p><p>2</p><p>2</p><p>Three possibilities: |Z| ≷ 0, |Z| = 0 – isotropic case </p><p>15 / 36 </p><p>SU(3, 1) – subgroup structure </p><p>(QTPH) </p><p><strong>SO</strong><sub style="top: 0.1058em;"><strong>v</strong></sub>H</p><p>QT = {r, ct} = x<sup style="top: -0.3753em;">µ </sup></p><p><strong>L</strong><sub style="top: 0.1058em;"><strong>k </strong></sub></p><p>ꢅ</p><p>P H&nbsp;= p, E/c&nbsp;= p<sup style="top: -0.3754em;">µ </sup><br>~β<sub style="top: 0.1363em;">v </sub>= ~v/c </p><p><strong>C</strong></p><p><strong>center </strong></p><p><strong>*</strong></p><p><strong>C</strong><sub style="top: 0.1021em;"><strong>4 </strong></sub></p><p><strong>SO</strong>H</p><p><strong>U</strong><sub style="top: 0.1021em;"><strong>kl </strong></sub>‡ </p><p><strong>SU</strong>H</p><p>(PTQH) </p><p>ꢅ</p><p>P T&nbsp;= p, F<sub style="top: 0.1363em;">0</sub>t = Π<sup style="top: -0.3753em;">µ </sup></p><p><strong>M</strong><sub style="top: 0.1058em;"><strong>k </strong></sub></p><p>QH = {r, E/F<sub style="top: 0.1363em;">0</sub>} = Ξ<sup style="top: -0.3753em;">µ </sup></p><p><strong>SO</strong><sub style="top: 0.1058em;"><strong>f </strong></sub>H</p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">~</li></ul><p>β<sub style="top: 0.138em;">f </sub>= f/F<sub style="top: 0.1363em;">0 </sub></p><p>F<sub style="top: 0.1363em;">0 </sub>= F<sub style="top: 0.1363em;">max </sub></p><p>k, l = 1, 2, 3 </p><p>16 / 36 </p><p>Reciprocal Invariant S<sub style="top: 0.3697em;">B</sub><sup style="top: -0.4338em;">2 </sup>as BG metric invariant </p><p>Z<sup style="top: -0.4338em;">µ</sup>Z<sub style="top: 0.3697em;">µ</sub><sup style="top: -0.4338em;">∗ </sup></p><p>By def: Z<sub style="top: 0.1364em;">µ </sub>= X<sub style="top: 0.1364em;">µ </sub>+ iY<sub style="top: 0.1364em;">µ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X<sub style="top: 0.1363em;">µ </sub>= </li><li style="flex:1">x<sub style="top: 0.1363em;">µ </sub>= </li></ul><p></p><p>{x<sub style="top: 0.1363em;">0</sub>, x<sub style="top: 0.138em;">k</sub>}, Y<sub style="top: 0.1363em;">µ </sub>= </p><p>p<sub style="top: 0.1363em;">µ </sub>= </p><p>{p<sub style="top: 0.1363em;">0</sub>, p<sub style="top: 0.138em;">k</sub>}. </p><p></p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.1363em;">e </sub></li><li style="flex:1">q<sub style="top: 0.1363em;">e </sub></li><li style="flex:1">p<sub style="top: 0.1363em;">e </sub></li><li style="flex:1">p<sub style="top: 0.1363em;">e </sub></li></ul><p></p><p>Then: </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p>ꢁ</p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">3</li><li style="flex:1">3</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>1</p><p>q<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2626em;">2 </sup></p><p>1</p><p>p<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2626em;">2 </sup></p><p>S<sub style="top: 0.2812em;">B</sub><sup style="top: -0.3753em;">2 </sup></p><p>=</p><p>x<sup style="top: -0.3753em;">2</sup><sub style="top: 0.2812em;">0 </sub>− x<sub style="top: 0.2812em;">k</sub><sup style="top: -0.3753em;">2 </sup></p><p>+</p><p>p<sup style="top: -0.3753em;">2</sup><sub style="top: 0.2812em;">0 </sub>− p<sub style="top: 0.2812em;">k</sub><sup style="top: -0.3753em;">2 </sup></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">3</li><li style="flex:1">3</li></ul><p></p><p>x<sub style="top: 0.2811em;">0</sub><sup style="top: -0.3299em;">2 </sup>q<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup>p<sub style="top: 0.2811em;">0</sub><sup style="top: -0.3299em;">2 </sup>p<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup>x<sub style="top: 0.2811em;">k</sub><sup style="top: -0.3299em;">2 </sup>q<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup>p<sub style="top: 0.2811em;">k</sub><sup style="top: -0.3299em;">2 </sup>p<sub style="top: 0.2811em;">e</sub><sup style="top: -0.2627em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>−</p><p>+</p><p></p><ul style="display: flex;"><li style="flex:1">= |Z<sub style="top: 0.1363em;">0</sub>| − </li><li style="flex:1">|Z<sub style="top: 0.138em;">k</sub>| = Z<sup style="top: -0.3753em;">µ</sup>Z<sub style="top: 0.2811em;">µ</sub><sup style="top: -0.3753em;">∗ </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p>Let x<sub style="top: 0.1363em;">µ</sub>, p<sub style="top: 0.1363em;">µ </sub>to be 4-vectors under SO<sub style="top: 0.1363em;">v</sub>(3, 1)-transformations </p><p>17 / 36 </p><p>Notice! There exist alternative: </p><p>¯</p><p>Z<sub style="top: 0.1363em;">µ </sub>= X<sub style="top: 0.1363em;">µ </sub>+ iY<sub style="top: 0.1363em;">µ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">x<sub style="top: 0.1363em;">0 </sub>p<sub style="top: 0.138em;">k </sub></li><li style="flex:1">p<sub style="top: 0.1363em;">0 </sub>x<sub style="top: 0.138em;">k </sub></li></ul><p>,</p><p>p<sub style="top: 0.1364em;">e </sub>q<sub style="top: 0.1364em;">e </sub></p><p>def </p><p>=</p><p>def </p><p>=</p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us