Brane Brick Models and Their Elliptic Genera

Brane Brick Models and Their Elliptic Genera

2016 Current Topics in String Theory : CFT Brane Brick Models and their Elliptic Genera Dongwook Ghim Seoul National University 2016. 12. 15 @ KIAS, Seoul 2016. 12. 15. KIAS This talk is based on … • 1506.03818 – Construction of theories SF, DG, SL, RKS, DY • 1510.01744 – Brane Brick SF, SL, RKS • 1602.01834 – (0,2) Triality SF, SL, RKS • 1609.01723 – Mirror perspective SF, SL, RKS, CV • 1609.07144 – Orbifold reduction SF, SL, RKS • 1612. to appear – Elliptic genus SF, DG, SL, RKS Collaborators: Sebastian Franco (CUNY), Sangmin Lee (SNU), Rak-Kyeong Seong (Uppsala), Daisuke Yokoyama (King’s college), Cumrun Vafa (Harvard) 2016. 12. 15. KIAS 2 Brane Brick Model 2d (0,2) gauge theory as a world-volume theory of D1-branes probing toric Calabi Yau 4-fold cones 2d (0,2) quiver gauge theory with U(N) gauge groups Quiver diagram N D1-branes toric CY 4-fold Brane configuration Toric diagram 2016. 12. 15. KIAS 3 Relatives and ancestors D(9-2n)-branes In type-IIB string theory, D(9-2n)-branes probing toric CY n-folds toric CYn dim, T-dual Symmetry n # of SUSY configuration 2 6d, N=(1,0) Necklace quiver - 3 4d, N=1 Brane tiling Seiberg duality 4 2d, N=(0,2) Brane brick GGP triality 2016. 12. 15. KIAS 4 2d (0,2) quiver gauge theories Gauge Theory SUSY multiplets of 2d (0,2) theories multiplets superfield component fields vector V (va, χ , χ ,D) − − chiral Φij (φ, +) Quiver diagrams of Fermi ⇤ij (λ ,G) − 2d (0,2) gauge theories • 2d (0,2) field-strength multiplet with U(N) gauge group + + + Y = χ i✓ (D iF01) i✓ ✓ @+χ − − − − − Φ • 2d (0,2) chiral ij • 2d (0,2) Fermi ⇤ij J-term E-term For SUSY, 2016. 12. 15. KIAS 5 Brane Brick Brane Configuration A graph-dual of periodic quiver gauge group = bulk of brick chiral fields = oriented surfaces graph dual Fermi fields = unorientable srfs or T-dual of brane configuration {arg(x2,3), arg(x4,5), arg(x6,7)}=T3 D1-branes toric CY 4-fold T-dual3 0 1 2 3 4 5 6 7 8 9 D4 NS5 NS5 branes wrap a holomorphic cycle 2016. 12. 15. KIAS 6 Why 3-torus? Toric Calabi-Ya u 4 Toric Calabi-Yau 4-fold has 4 isometries; 3 Each corresponds to U(1)R U(1) global symmetry ⇥ of 2d (0,2) gauge theory. Toric diagrams of toric CY4 cones toric CY 4-fold 2016. 12. 15. KIAS 7 So far… Graph dual Brane Brick Periodic Quiver Phase 3-torus Boundaries Toric diagram Quiver diagram mesonic moduli space 2016. 12. 15. KIAS 8 Outline Introduction to Brane brick done! A new elliptic genus Geometric formula of new elliptic genus Summary 2016. 12. 15. KIAS 9 A new elliptic genus 10 Elliptic genus: review Definition (a ; q)=Tr ( 1)F qHL qHR afi I i RR − i Property Y • q- independence • coupling-independence [Gadde, Gukov 13] Localization for (0,2) GLSM [Benini, Eager, Hori, Tachikawa 13] 0 a χ Y = χ a Qi φi +i +h.c • gaugino zero-mode saturated by L − a i ! X X d2ru dχ0dχ0 d2z χ Qaφ d2z χ Qbφ Z I ⇠ c c a i i i b j j j 1-loop c * i j + Z Z Y Ya,b Z X Z X • JK-residue for charges of bosonic fields 2016. 12. 15. KIAS 11 Why “new”? Index with non-commuting operator insertion [Cecotti, Fendley, Intriligator, Vafa 92] (a ; q)=Tr ( 1)F qHL qHR afi I i RR − O i Y U(1) decouplinge in every theory of brane brick models Ex. a quiver diagram of Co x C model Fermionic zero-mode from decoupled free U(1) [Israel, Sarkis 15] Ex. gaugino zero-mode without Yukawa term [Kologlu 16] a Y = χ a Qi φi +i +h.c L − a i ! X X Insertion of zero-mode part of R-symmetry current operator 0 0 0 JR = χ χ +( ) − − − ··· 2016. 12. 15. KIAS 12 Property (a ; q)=Tr ( 1)F J qHL qHR afi I i RR − R i Y •q -independencee not guaranteed in general [Cecotti, Fendley, Intriligator, Vafa 92] [Israel, Sarkis 15] •coupling-independence 0 0 0 With the insertion of JR = χ χ +( ) , − − − ··· 2 1 1 d z 0 0 ⌫ [ ] ⌫ [Φ,⇤, ] ⌫free[ ] (e, g)= Φ ⇤ χ χ e− e2 Q int A −Q m A e− g2 Q A I D D DADA Im⌧ Z ✓Z ◆ e e e @ 0 0 S I 2 = Φ ⇤ χ χ ⌫int e− @(1/e ) D D DADA ⌃ Q e Z ✓Z ◆ 0 0 S 0 0 S = Φ ⇤ e χ χ ⌫ e− χ χ ⌫ e− D D DADAQ int − Q int Z ✓Z⌃ ◆ Z⌃ e 2016. 12. 15. KIAS 13 Property (a ; q)=Tr ( 1)F J qHL qHR afi I i RR − R i Y • coupling-independencee (cont’d) @ 0 0 S 0 0 S I 2 = Φ ⇤ χ χ ⌫int e− χ χ ⌫int e− @(1/e ) D D DADAQ ⌃ − Q ⌃ e Z ✓Z ◆ Z =0 e Note that χ = D iF01 =0 and ⌫ = χ (D + iF01). Q − 6 − − However, gaugino zero-mode from free U(1) vector is NOT saturated by them: dχ0dχ0 1=0. Z Thus, is protected under RG flow I e 2016. 12. 15. KIAS 14 Computation • Decoupled gaugino: zero-mode-saturated one-loop determinant (eta-function) dχ0dχ0 χ0χ0 =1 Z 0 0 S 2 χ χ χ χ e− free = (m + n⌧)= i⌘(q) D D − Z (m,n)=0 Y6 • Refinement with fugacity a x, y, z corresponding i 2 { } to 3 global symmetries for regularization 1 ⌘(q)2 (ai; q)= JK-Res (Q u , ⌘) Z1-loop(u, ai; q) u=u ⇤ I W ⇤ | i u M⇤ | | ⇤2Xsing e r • For G0 = U(1) /U(1)overall , we need to read JK-residue of the one-loop determinant factors from the interacting sectors (vector, chiral and fermi multiplets) 2016. 12. 15. KIAS 15 Geometric formula for new elliptic genus 16 Building block : C4 theory field U(1)x U(1)y U(1)z U(1)R X +1/2 1/2 1/21/2 Y 1/2+1− /2 −1/21/2 Z −1/2 1/2+1− /21/2 D +1− /2+1− /2+1/21/2 ⇤1 1000 ⇤2 0100 4 Quiver diagram of C theory ⇤3 0010 Global charges of matter fields in C4 theory Its new elliptic genus 3 ⌘(q) ✓1(q, x)✓1(q, y)✓1(q, z) C4 (x, y, z; q)= . I ✓1(q, x/yz)✓1(q, y/xz)✓1(q, z/xy)✓1(q, pxyz) e p p p … made of the following elements ⇢ r 2 ⌘(q) ✓1(q, x ) 2⇡⌘(q) ZΦ = i ⇢ ,Z⇤ = i ,ZV = dua . ✓1(q, x ) ⌘(q) i ⇢ ⇢ a=1 Y2R Y2R Y 1 ⌘(q)2 (ai; q)= JK-Res (Q u , ⌘) Z1-loop(u, ai; q) . u=u ⇤ I W ⇤ | i u M⇤ | | ⇤2Xsing e 2016. 12. 15. KIAS 17 Toric diagram Toric diagram (in Z4, but projected to Z3) encodes the geometric data of transverse CY4 geometry. Toric diagrams of toric CY4 cones toric CY 4-fold 2016. 12. 15. KIAS 18 Geometric formula from triangulation Triangulation of toric diagram dual cone for each {a} 1 (wap ) = ✏apaq ar as ✏ vj vk vl . i (3!)2 ijkl aq ar as 3 x TM three {a} (minimal tetrahedron) Sum of elliptic genera (C4-like pieces) corresponding to each building block, a minimal tetrahedron 4 ap a (w )i y{ }(t)= t , 3 3 a p i ⌘(q) e=1 ✓1 q, ze{ }(t) i=1 (t)= . Y M 4 ⇣ a ⌘ a y1y4 a y2y4 a y3y4 J Q { } a p=1 ✓1 q, yp (t) z1{ }(t)= ,z2{ }(t)= ,z3{ }(t)= . { X}2TM y y y y y y e r 2 3 r 3 1 r 1 2 Q ⇣ ⌘ X (x, y, z; q)= (t) . ↵ β γ I JM ti=x i y i z i (inspired by) [Martelli, Sparks, Yau 05] e e 2016. 12. 15. KIAS 19 4 Example : C /Z2 (0011) 4 2 2⇡i⌘(q) ✓1(q, z) Z1-loop = − 2 2 ✓1(q, x/yz) ✓1(q, y/xz) p ✓1(q, ux)p✓1(q, x/u)✓1(q, uy)✓1(q, y/u) 1 1 ⇥ ✓1(q, u z/xy) ✓1(q, u− z/xy)✓1(q, upxyz)✓1(q, u− pxyz) p p JK-residue for Qu = +1 4 Quiver diagram of C /Z2 theory ⌘(q)3✓ (q, z) = 1 I ✓1(q, x/yz)✓1(q, y/xz)⇥ e ✓ (q, x3yz)✓ (q, xy3z) ✓ (q, x3y/z)✓ (q, xy3/z) 1 p 1 p + 1 1 ✓ (q, xy)✓ (q, xyz) ✓ (q, xy)✓ (q, xy/z) 1p 1 p p1 1 p x y t = ,t= ,t= xy , t =1 1 yz 2 zx 3 4 r r 3 t1t2 t1t3 t2t3 ⌘(q) ✓1(q, )✓1(q, )✓1(q, ) = pt4 pt4 pt4 I ✓ (q, t )✓ (q, t )✓ (q, t )✓ (q, t4 ) 1 1 1 2 1 3 1 t1t2t3 3 t1t2 t1 t2 e ⌘(q) ✓1(q, )✓1(q, )✓1(q, ) + pt4 t3pt4 t3pt4 1 t3t4 ✓1(q, t1)✓1(q, t2)✓1(q, t3− )✓1(q, ) 4 t1t2 Toric diagram of C /Z2 2016. 12. 15. KIAS 20 Discussion Gauge theory from brane brick incorporates geometry. Geometric formula Gauge theory formula a 3 3 2 ⌘(q) e=1 ✓1 q, ze{ }(t) 1 ⌘(q) = = JK-Res Z1-loop(u, ai; q) IM 4 ⇣ a ⌘ I W u=u i a pQ=1 ✓1 q, yp{ }(t) u ⇤ { X}2TM ti=fi(x,y,z) | | ⇤ e X Q ⇣ ⌘ e 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us