Synthesis of Β-Turn and Pyridine Based Peptidomimetics

Synthesis of Β-Turn and Pyridine Based Peptidomimetics

Synthesis of β-Turn and Pyridine Based Peptidomimetics David Blomberg Department of Chemistry, Organic Chemistry Umeå University Umeå 2007 Department of Chemistry, Organic Chemistry Umeå University SE-901 87 Umeå Copyright 2007 by David Blomberg ISBN 978-91-7264-305-5 Printed in Sweden by Intellecta DocuSys, Västra Frölunda, 2007 Contents 1. List of Papers.................................................................................................. 3 2. List of Abbreviations ..................................................................................... 5 3. Introduction .................................................................................................... 7 3.1 Structure and function of peptides and proteins.................................... 7 3.2 Peptidomimetics ...................................................................................... 9 3.2.1 Development of a peptidomimetic drug - Exanta ....................... 10 4. Objectives of the thesis ................................................................................ 12 5. Peptidomimetics of Leu-enkephalin ........................................................... 13 5.1 Biological action and conformation of Leu-enkephalin ..................... 13 5.2 Design of Leu-enkephalin peptidomimetics........................................ 14 5.3 Synthesis of peptidomimetics incorporated in Leu-enkephalin ......... 15 5.3.1 Synthesis of a ten membered β-turn mimetic.............................. 15 5.3.2 Conformational studies of the ten membered β-turn mimetic using NMR spectroscopy ....................................................................... 20 5.3.3 Synthesis of a seven membered β-turn mimetic on solid phase. 21 5.3.4 Synthesis of linear Leu-enkephalin analogues ............................ 22 5.4 Biological evaluation ............................................................................ 24 5.4.1 Opioid receptor binding assay ...................................................... 24 5.4.2 Binding to µ- and δ- opioid receptors .......................................... 25 5.5 Summary................................................................................................ 27 6. β-Strand peptidomimetics............................................................................ 29 6.1 β-Strands................................................................................................ 29 6.2 Design and retrosynthetic analysis of a β-strand mimetic.................. 30 6.3 Attachment of an N-terminal leucine analogue at position 4 of the pyridine ring................................................................................................. 32 6.4 Attachment of a C-terminal glycine analogue at position 2 of the pyridine ring................................................................................................. 34 6.4.1 Nucleophilic aromatic substitution............................................... 34 6.4.2 A reductive amination strategy..................................................... 40 6.4.3 Changing the substitution order and starting with the SNAr reaction .................................................................................................... 41 6.5 Completing the synthesis − A successful Boc strategy ...................... 42 1 6.6 Incorporation of a second chiral amino acid analogue and attempts to elongate the β-strand mimetic..................................................................... 45 6.6.1 Introducing a chiral amino acid analogue instead of glycine as C- terminus................................................................................................... 45 6.6.2 Attempts to elongate the β-strand mimetic.................................. 46 6.6.3 Conclusions.................................................................................... 49 6.7 Summary................................................................................................ 49 7. Thrombin inhibitors ..................................................................................... 51 7.1 Biological action of thrombin............................................................... 51 7.2 Structure based design .......................................................................... 53 7.3 Retrosynthetic analysis of the thrombin inhibitors ............................. 53 7.4 Synthesis of thrombin inhibitors .......................................................... 54 7.4.1 Attempts to obtain thrombin inhibitors via a Grignard exchange reaction followed by an SNAr reaction using substituted benzylamines .................................................................................................................. 54 7.4.2 A reductive amination approach................................................... 57 7.4.3 Conversion of the cyano group to the desired benzamidines ..... 58 7.5 Biological evaluation ............................................................................ 61 7.6 Crystal structure .................................................................................... 61 7.7 Summary................................................................................................ 62 8. Thrombin inhibitors with reduced basicity................................................. 64 8.1 Introduction............................................................................................ 64 8.2 Structure based design and retrosynthetic analysis............................. 64 8.3 Synthesis of thrombin inhibitors .......................................................... 65 8.3.1 Synthesis of Boc-protected alaninal and glycinal ....................... 65 8.3.2 A Grignard reaction and nucleophilic aromatic substitution with cyclic amines........................................................................................... 66 8.3.3 Completing the synthesis .............................................................. 67 8.4 Biological evaluation ............................................................................ 68 8.5 Summary................................................................................................ 68 9. Concluding remarks ..................................................................................... 70 10. Acknowledgement ..................................................................................... 73 11. References .................................................................................................. 75 Appendix........................................................................................................... 85 Experimental section for chapter 8........................................................ 85 2 1. List of Papers I David Blomberg, Mattias Hedenström, Paul Kreye, Ingmar Sethson, Kay Brickmann and Jan Kihlberg; Synthesis and conformational studies of a β-turn mimetic incorporated in Leu- enkephalin. J. Org. Chem., 2004, 69, 3500-3508. II David Blomberg, Paul Kreye, Kay Brickmann, Chris Fowler and Jan Kihlberg; Synthesis and biological evaluation of leucine enkephalin turn mimetics. Org. Biomol. Chem., 2006, 4, 416- 423. III David Blomberg, Kay Brickmann and Jan Kihlberg; Synthesis of a β-strand mimetic based on a pyridine scaffold. Tetrahedron, 2006, 62, 10937-10944. IV David Blomberg, Tomas Fex, Yafeng Xue, Kay Brickmann and Jan Kihlberg; Design, synthesis and biological evaluation of thrombin inhibititors based on a pyridine scaffold. Submitted. V David Blomberg, Tomas Fex, Kay Brickmann and Jan Kihlberg; Design, synthesis and biological evaluation of thrombin inhibitors lacking a strong basic functionality in P1. Manuscript. Reprinted with kind permission from the publishers. 3 4 2. List of Abbreviations Bn benzyl Boc tert-butoxycarbonyl BSA bovine serum albumin Cbz benzyloxycarbonyl DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCC dicyclohexyl carbodiimide DCE 1,2-dichloroethane DIBAL diisobutylaluminium hydride DIC N,N’-diisopropyl carbodiimid DIPEA diisopropylethylamine DMAP N,N-dimethylaminopyridine DPDPE [3H] [D-Pen2, D-Pen5]enkephalin DTI direct thrombin inhibitor EWG electron withdrawing group Fmoc 9-fluorenylmethyloxycarbonyl GPCR G protein-coupled receptor HATU O-(7-azabenzotriazole-1-yl)-N, N,N’N’- tetramethyluronium hexafluorophosphate HMDS hexamethyldisilazane HOAt 1-hydroxy-7-azabenzotriazole HOBt N-hydroxybenzotriazole K-selectride potassium tri-sec-butylborohydride LCMS liquid chromatography mass spectrometry LHRH luthenizing hormone releasing hormone N,O-DMHA N,O-dimethylhydroxylamine NMO N-methyl morpholine N-oxide NMR nuclear magnetic resonance NOE nuclear overhauser enhancement NOESY nuclear overhauser enhancement spectroscopy PAM 4-(Hydroxymethyl)phenylacetamidomethyl PMB p-methoxybenzyl chloride Q tetrabutylammonium rt room temperature 5 TBAF tetrabutylammonium fluoride TBDMS tert-butyldimethyl silyl TEA triethylamine TMP 2,4,6-trimethylpyridine TFA trifluoro acetic acid TFAA trifluoro acetic anhydride TFE 2,2,2-trifluoroethanol TMS trimethylsilyl Tris tris hydroxymethylaminoethane UHP urea hydrogen peroxide 3-D three dimensional 6 3. Introduction 3.1 Structure and function of peptides and proteins On a molecular level proteins are built up by small residues, amino acids, that are connected via amide bonds to form chains (Figure 3.1). Shorter amino acid sequences, usually containing 2−50 amino acid residues, are defined as peptides, while longer chains are defined as proteins. There are 20 naturally occurring

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    92 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us