COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright A role-based conceptual framework for teaching robotic construction technologies to architects Steven Robert Janssen Supervisor: Dr Rob Saunders A thesis submitted in fulfilment of the requirements for the degree of Master of Philosophy Faculty of Architecture, Design and Planning University of Sydney 2014 Abstract In the last 30 years, there has been increasing interest in the adoption of robotics in the construction industry and more recently in architecture. Cutting edge technologies are often pioneered in industries such as automotive, aeronautical and ship building, and take decades to filter into the hands of architects. If this is to change, architects need to be better educated in the field of robotic construction technology. This research catalogues robotic construction technology currently being used by architects and discusses the motivations that drive architects to use this technology. This catalogue includes an interview with architect Dr Simon Weir and investigates his motivation for using robotic construction technologies on a project for an Aboriginal community in central Australia. Existing frameworks for classifying robotic construction technologies are reviewed and assessed for their suitability for use teaching architecture students about these technologies. This leads to the development of a new conceptual framework for teaching architecture students about robotic construction technology. This conceptual framework classifies the technology according to the role it plays in the construction process, which makes the information more accessible to architects. The developed conceptual framework is implemented by teaching a class of students from the Master of Architecture course at the University of Sydney. Results from this class reveal outcomes for further development of the implementation of the framework into the classroom. A revised course structure is presented along with an appropriate hybrid robotic system for teaching architecture students about robotic construction technology. Glossary of Terms 3D Printing A process for manufacturing three-dimensional objects through successive deposition of layers of material. CAD Computer-aided design CAM Computer-aided manufacturing CNC Computer numerical control IDE Integrated development environment 2 Table of Contents Abstract ....................................................................................................................................... 2 Glossary of Terms ........................................................................................................................ 2 1 Introduction .............................................................................................................................. 5 1.1 Background ................................................................................................................................... 5 1.2 Motivation for Research ............................................................................................................... 8 1.3 Research Questions ...................................................................................................................... 9 1.4 Aim ................................................................................................................................................ 9 1.5 Objectives...................................................................................................................................... 9 1.6 Significance ................................................................................................................................... 9 2 Literature Review .................................................................................................................... 10 2.1 Architects using robotic technology to solve existing design problems ..................................... 10 2.2 Architects experimenting with robotic technology to find new architectural possibilities........ 13 2.3 Architectural research developing new robotic technologies .................................................... 15 2.4 Discussion of the Literature Review............................................................................................ 21 3 Case Study 1: Interview with Dr Simon Weir ............................................................................ 24 3.1 Design Inspiration ....................................................................................................................... 25 3.2 Design Proposal ........................................................................................................................... 25 3.3 Construction Methodology ......................................................................................................... 27 3.4 Monitoring the Construction Process ......................................................................................... 28 3.5 Conclusion ................................................................................................................................... 29 4 Conceptual Framework ........................................................................................................... 30 4.1 Existing Classifications................................................................................................................. 30 4.1.1 Mitchell & McCullough ........................................................................................................ 30 4.1.2 Kolarevic ............................................................................................................................... 31 4.1.3 Schodek, Bechthold, Griggs, Kao & Steinberg...................................................................... 31 4.1.4 Bonwetsch, Gramazio & Kohler ........................................................................................... 32 4.1.5 Pottmann, Asperl, Hofer & Kilian ......................................................................................... 32 4.1.6 Dunn ..................................................................................................................................... 32 4.2 Analysis of Existing Classifications .............................................................................................. 33 Table 4.1 Summary of Classifications................................................................................................ 34 4.3 A Role-Based Conceptual Framework ......................................................................................... 35 4.3.1 Fabricators ........................................................................................................................... 35 3 4.3.2 Assemblers ........................................................................................................................... 35 4.3.3 Classifying 3D Printers .......................................................................................................... 35 Figure 4.1 Role-based Conceptual Framework ............................................................................. 36 4.3.4 Modular Construction .......................................................................................................... 37 4.3.5 On-site versus Off-site Construction .................................................................................... 38 4.3.6 Hybrid Robotic Construction Systems.................................................................................. 38 5 Case Study 2: Design Experiment with Students ....................................................................... 39 5.1 Design Task 1: Designing and Fabricating a Modular Architectural Component ....................... 40 5.1.1 Laser-cutting Demonstration ............................................................................................... 40 5.1.2 CNC Milling Demonstration ................................................................................................. 42 5.1.3 Task 1 Results ....................................................................................................................... 43 5.2 Design Task 2: Arranging the modules into an Assembly ........................................................... 44 5.2.1 Simulating the Robot’s Motion ...........................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages91 Page
-
File Size-