Studies of Carbon Nanomaterials Based on Fullerenes and Carbon Nanotubes

Studies of Carbon Nanomaterials Based on Fullerenes and Carbon Nanotubes

Studies of carbon nanomaterials based on fullerenes and carbon nanotubes Agnieszka Iwasiewicz-Wabnig Umeå 2007 Department of Physics, Umeå University Department of Physics Umeå University SE-901 87 Umeå, Sweden Copyright c 2007 by Agnieszka Iwasiewicz-Wabnig ISBN: 978-91-7264-346-8 Typeset in LATEX using Printed by Print & Media, Umeå 2007. To my Family Materials based on fullerenes and carbon nanotubes are very much different from most “traditional” materials, primarily because they are built from nanosized molecules with highly symmetry-depen- dent properties. Being the subject of a very active research field over the last twenty years, carbon nanostructures proved to be in- deed extraordinary. Their splendid mechanical properties attract a great interest among material scientists. Their wide range of electrical properties, from ballistic conductors to insulators, makes them ideal candidates for future, better electronics. The possibili- ties seem to be nearly unlimited, with proposed applications rang- ing from quantum computing to medicine. However, in order to make it all happen one day, we first need to explore and understand the physics and chemistry of carbon nanomaterials. This work fo- cuses on production and characterization of materials and struc- tures in which fullerenes and/or carbon nanotubes are the main ingredients, and which can be produced or modified under high- pressure–high-temperature (hp-hT) conditions. Raman and photo- luminescence spectroscopy, X-ray diffraction and scanning probe microscopy were employed for characterization of the samples. The research presented in this thesis is spread over a rather wide range of carbon nanomaterials. To highlight some of the main results – the first hp-hT polymerization of C60 nanorods and the C60-cubane compound is reported. The polymerization mechanism in the latter case was identified to be radically different from that in pure C60. The pressure-temperature diagram of C60-cubane is presented. A comparative study of C60 and C70 peapods under extreme p-T condi- tions reveals how the confinement affects the fullerenes’ ability for polymerization. Finally, in situ resistance measurements on Rb4C60 under high pressure show that the semiconducting character of this material persists at least up to 2 GPa, contradicting earlier re- ports on the existence of an insulator-to-metal transition and pro- viding an insight into conduction mechanisms in this anomalous intercalated compound. Sammanfattning KOLNANOMATERIAL BASERADE PÅ FULLERENER OCH KOLNANORÖR Material baserade på fullerener och kolnanorör skiljer sig avsevärt från de flesta "traditionella" material, i första hand därför att de byggs upp av nanometerstora molekyler med starkt symmetribero- ende egenskaper. Tjugo år av intensiva studier har visat att kol- nanostrukturer verkligen är extraordinära. Deras utmärkta meka- niska egenskaper tilldrar sig stort intresse från materialforskare, och deras oerhört mångsidiga elektriska egenskaper, som sträcker sig från ballistisk ledning till isolatorer, gör dem till ideala kandi- dater för framtida, bättre elektronik. Tillämpningarna verkar vara nästan utan gräns, och förslagen sträcker sig från kvantdatorer till medicinsk användning. För att få allt detta att fungera en dag måste vi emellertid först utforska och förstå nanomaterialens kemiska och fysikaliska egenskaper. Denna avhandling fokuserar på tillverkning och karaktärisering av material och strukturer där fullerener och/eller kolnanorör är huvudingrediensen, och som kan tillverkas eller modifieras genom användning av höga tryck och höga temperaturer. Ramanspektroskopi och fotoluminiscens, rönt- gendiffraktion och svepprobmikroskopi har använts för att karak- tärisera proverna. Den forskning som presenteras här sträcker sig över ett brett spektrum av kolnanomaterial. För att framhålla nå- gra av huvudresultaten rapporteras här för första gången högtryck- spolymerisation av C60-nanostavar och av föreningen C60-kuban. I det senare fallet visas att polymerisationsmekanismen radikalt skil- jer sig från den mekanism som är känd från rent C60. Tryck- och temperaturfasdiagrammet för C60-kuban har också undersökts och presenteras här. En jämförande studie av C60- och C70-"ärtskidor" (fullerener fyllda i kolnanorör) behandlade under extrema tryck- temperaturförhållanden avslöjar hur inneslutning i nanometerstora utrymmen påverkar fullerenernas förmåga att polymerisera. Slutli- gen visar resistansmätningar på Rb4C60 under höga tryck att denna förening är en halvledare vid alla tryck upp till 2 GPa, vilket di- rekt motsäger tidigare rapporter om en transition från halvledare till metall. Mätningarna ger också en inblick i ledningsmekanis- merna i denna ovanliga, interkalerade alkalimetallförening. vii Included papers This thesis is based on the following publications, which are ap- pended at the end, and numbered chronologically, as below: I “Synthesis of Thin, Rectangular C60 Nanorods Using m-Xylene as a Shape Controller” Lin Wang, Bingbing Liu, Dedi Liu, Mingguang Yao, Yuanyuan Hou, Shidan Yu, Tian Cui, Dongmei Li, Guangtian Zou, Agnieszka Iwasiewicz and Bertil Sundqvist Advanced Materials 18 (2006) 1883-1888 http://dx.doi.org/10.1002/adma.200502738 Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. II “Photoluminescence properties of high-pressure-polymerized C60 nano- rods in the orthorhombic and tetragonal phases” Yuanyuan Hou, Bingbing Liu, Lin Wang, Shidan Yu, Mingguang Yao, Ao Chen, Dedi Liu, Tian Cui, Guangtian Zou, Agnieszka Iwasiewicz and Bertil Sundqvist Applied Physics Letters 89 (2006) 181925 http://dx.doi.org/10.1063/1.2378396 Copyright 2006, American Institute of Physics. Reprinted with permission. III “Polymerization of the rotor-stator compound C60-cubane under pres- sure” A. Iwasiewicz-Wabnig, B.Sundqvist, É. Kováts, I. Jalsovszky and S. Pekker Physical Review B, 75 (2007) 024114 http://link.aps.org/abstract/PRB/v75/e024114 Copyright (2007) American Physical Society (APS). Reprinted in accordance with au- thor’s retained rights. IV “Pressure-temperature phase diagram of the rotor-stator compound C60-cubane” A. Iwasiewicz-Wabnig, R.Röding, B.Sundqvist, É. Kováts, I. Jalsovszky and S. Pekker Solid State Communications, 143 (2007) 208-212 http://dx.doi.org/10.1016/j.ssc.2007.05.029 Copyright Elsevier (2007). Reprinted with permission. viii V “Discriminated structural behaviour of C60 and C70 peapods under extreme conditions” M. Chorro, J. Cambedouzou, A. Iwasiewicz-Wabnig, L. Noé, S. Rols, M. Monthioux, B. Sundqvist and P. Launois Europhysics Letters, 79 (2007) 56003 http://dx.doi.org/10.1209/0295-5075/79/56003 Copyright (2007) Europhysics Letters Association (EPLA). Reprinted in accordance with author’s retained rights. VI “Comparative study of pressure-induced polymerization in C60 nano- rods and single crystals” Y. Hou, B. Liu, L.Wang, S. Yu, M. Yao, A. Chen, D. Liu, Y. Zou, Z. Li, T. Cui, G. Zou, A. Iwasiewicz-Wabnig and B. Sundqvist J. Phys.: Cond. Matter, accepted (2007) (Proc. 3rd Asian Conf. on High Pres- sure, Lijiang, Oct. 2006) VII “Low-temperature optical studies of C60-cubane rotor-stator compound” A. Iwasiewicz-Wabnig, É. Kováts, S. Pekker and B. Sundqvist submitted to Journal of Physics, Conference Series (2007) VIII “No insulator-metal transition in Rb4C60 under pressure below 2 GPa” A. Iwasiewicz-Wabnig, T. Wågberg, T. Makarova and B. Sundqvist submitted to Physical Review B (2007) IX “Strain effects on Raman spectra of tetragonally polymerized C60 single crystals” A. Iwasiewicz-Wabnig, T. Wågberg and B. Sundqvist in manuscript (2007) The contents of the above papers is summarized and put in a wider context in Part III. The paper reprints are also preceded by a general introduction and complemented with additional information about experimental details and some unpublished results. ix Contents Introduction and motivation 1 I Introduction to materials and experimental techniques 5 1 Experimental methods 7 1.1 High-pressure – high-temperature treatment . 7 1.2 Raman spectroscopy . 12 1.3 Photoluminescence . 15 1.4 Low temperature luminescence and Raman spectra . 18 1.5 X-ray diffraction . 19 1.6 Scanning probe microscopy . 23 2 C60 fullerene 27 2.1 The molecule . 27 2.2 Vibrational modes . 31 2.3 Crystal structure . 32 2.4 Experimental studies . 35 3 Alkali metal intercalated C60 41 4 Cubane 43 5 C60-cubane, a rotor – stator compound 46 5.1 Crystal structure . 46 5.2 Experimental studies . 47 6 Carbon nanotubes 51 6.1 Structure . 51 6.2 Synthesis . 54 6.3 Highlighted properties . 54 7 Peapods 59 8 Concept material: C60-nanotube co-polymer 60 x II Selected experimental particulars and results 63 9 Studies of tetragonally polymerized C60 crystals 65 9.1 Synthesis . 65 9.2 Characterization . 68 10 Polymerization and studies of C60 nanorods 69 10.1Polymerization by hp-hT treatment . 69 10.2AFM characterization . 69 11 In situ measurements of Rb4C60 resistance under high pressure 72 11.1Pressure cell design . 72 11.2Isobaric cooling and heating . 74 12 C60 and C70 peapods under high pressure 76 13 Polymerization and the phase diagram of C60-cubane com- pound 79 13.1Experimental details . 79 13.2C60·C8H8 phase diagram . 84 13.3Comparison between C60 and C60·C8H8 . 86 14 C60-nanotube co-polymerization attempts 88 14.1Preparation of the mixtures . 88 14.2hp-hT treatment . 89 14.3Characterization . 91 III Summary of the included papers 95 Paper I, II and VI . 96 Paper III, IV and VII . 96 Paper V . 97 Paper VIII . 98 Paper IX . 99 IV Supplementary material 101 15 Overview of activities

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    127 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us