2 -‐ the Photon Propagator

2 -‐ the Photon Propagator

2 - The photon propagator Path integral formalism - reminder staonary phase approximaon • Classical limit ! → 0 Euler-Lagrange classical field equaon Path integral formalism • Generang Func7onal Klein-Gordon propagator ⎡ i d 4 k ⎤ Z 0 0 | 0 D exp ! k k 2 m2 ! k 1 (no interactions) 0 ( ) = J =0 = χ ⎢− 4 χ ( )( + )χ (− )⎥ = ∫ ⎢ 2 ∫ (2π ) ⎥ ⎣ ⎦ Feynman propagator Photon propagator Path integral formalism ! 4 −ik.x 1 4 ik.x ! Aµ (k) = d x e A (x), A (x) = d k e Aµ (k) ∫ µ µ 2 4 ∫ ( π ) Photon propagator Path integral formalism ! 4 −ik.x 1 4 ik.x ! Aµ (k) = d x e Aµ (x), Aµ (x) = 4 d k e Aµ (k) ∫ 2π ∫ ( ) Projec7on matrix: 2 µν k P Pµν (k)P λ (k) = Pµλ (k) ( ν ) Photon propagator 2 µν µ ν 2 µν To complete the square need to invert k g − k k ≡ k P µν ...but P kν = 0, zero eigenvalue...not invertible Photon propagator 2 µν µ ν 2 µν To complete the square need to invert k g − k k ≡ k P µν ...but P kν = 0, zero eigenvalue...not invertible In fact component of Aµ ∝ kµ doesn't appear ... sufficient to integrate DAµ over transverse components, A! µ , only ... µ ! µ ! ... equivalent to k Aµ = 0... Lorentz gauge ∂ Aµ = 0 ! iden7ty matrix in subspace Aµ µν −1 P k 2Pµν (k) = ( ) k 2 − iε k 2 Pµν Pα J k ! ! µ α ( ) χ µ (k) = Aµ (k) + 2 k − iε k 2 Pµν Pα J k ! ! µ α ( ) χ µ (k) = Aµ (k) + 2 k − iε ⎡ 4 ⎤ ! i d k ! 2 µν ! Z0 (0) = 0 | 0 J =0 = Dχ exp ⎢− 4 χ µ (k)k P χν (−k)⎥ = 1 ∫ ⎢ 2 ∫ (2π ) ⎥ ⎣ ⎦ Photon propagator In the Lorenz gauge The term iε Fields must match onto free fields at t=±∞ iS f S i = dφ e (φ) f φ(t = +∞) φ(t = −∞) i (me ordering) ∫ ψ (q) = q n n H → (1− iε)H Lim q',t ' =ψ *(q') 0 etc. t'→−∞ 0 i.e. picks out ground state in ini7al and final states Fixing the gauge Want to be able to determine the propagator is various gauges … .. instruc7ve to see how it is done in canonical formalism Klein-Gordon propagator µ 2 Want to solve : (−∂µ∂ + m )ψ = −Vψ 4 Soluon : ψ (x) = φ(x) + d x'Δ (x'− x)V (x')ψ (x') ∫ F where (∂ ∂µ − m2 )φ x = 0 µ ( ) and (∂ ∂µ − m2 )Δ x'− x = δ 4 x'− x µ F ( ) ( ) Reminder: Klein-Gordon propagator µ 2 Want to solve : (−∂µ∂ + m )ψ = −Vψ 4 Soluon : ψ (x) = φ(x) + d x'Δ (x'− x)V (x')ψ (x') ∫ F where (∂ ∂µ − m2 )φ x = 0 µ ( ) and (∂ ∂µ − m2 )Δ x'− x = δ 4 x'− x µ F ( ) ( ) Solve for propagator in momentum space by taking Fourier transform 1 −ip.(x'−x) µ 2 4 1 −ip.(x'−x) 4 4 22 e (∂ ∂ +− m )Δ (x '− x)d (x '− x) = 22 e δ (x '− x)d (x '− x) - (22π ) ∫ µ F (22π ) ∫ 2 2 ! 1 −( p + m )ΔF ( p) = 2 (2π ) −ip.x ! 1 1 1 4 1 Δ F ( p) = − 2 2 2 , Δ (x) = − 4 d p e 2 2 (2π ) p + m −iε F (2π ) ∫ p + m −iε The photon propagator • The propagators determined by terms quadrac in the fields, using the Euler Lagrange equaons. ∂ F µν = ∂ ∂µ Aν − ∂ν (∂µ A ) = jν ≡ gνλ∂2 − ∂ν ∂λ A µ µ µ ( ) λ Gauge ambiguity A → A + ∂ α µ µ 2 µ µ µ ∂ Aµ → ∂ Aµ + ∂ α The photon propagator • The propagators determined by terms quadrac in the fields, using the Euler Lagrange equaons. Choose as F µν µ Aν ν ( µ A ) jν gνλ 2 ν λ A ∂µ = ∂µ∂ − ∂ ∂ µ = ≡ ∂ − ∂ ∂ λ 1 ( ) − ∂µ A ξ µ Gauge ambiguity (gauge fixing) A → A + ∂ α µ µ 2 µ µ µ ∂ Aµ → ∂ Aµ + ∂ α i.e. with suitable “gauge” choice of α (“ξ” gauge) want to solve µ ν 1 ν µ νλ 2 1 ν λ ν ∂µ∂ A − (1− )∂ (∂µ A ) ≡ (g ∂ − (1− )∂ ∂ )Aλ = j ξ ξ Now inver7ble … in momentum space the photon propagator is −1 ⎛ 1 ⎞ i ⎛ p p ⎞ i g µν p2 (1 ) pµ pν g (1 ) µ ν − ⎜ − − ⎟ = 2 ⎜ − µν + −ξ 2 ⎟ ⎝ ξ ⎠ p ⎝ p ⎠ The photon propagator • The propagators determined by terms quadrac in the fields, using the Euler Lagrange equaons. Choose as F µν µ Aν ν ( µ A ) jν gνλ 2 ν λ A ∂µ = ∂µ∂ − ∂ ∂ µ = ≡ ∂ − ∂ ∂ λ 1 ( ) − ∂µ A ξ µ Gauge ambiguity (gauge fixing) A → A + ∂ α µ µ 2 µ µ µ ∂ Aµ → ∂ Aµ + ∂ α i.e. with suitable “gauge” choice of α (“ξ” gauge) want to solve µ ν 1 ν µ νλ 2 1 ν λ ν ∂µ∂ A − (1− )∂ (∂µ A ) ≡ (g ∂ − (1− )∂ ∂ )Aλ = j ξ ξ We have used choice of a specific gauge transformaon to modify the equaon of mo7on. The ques7on is how do you modify the Lagrangian to get this equaon of mo7on? Will need to add a ``gauge fixing” term such that it is no longer gauge invariant and gives this equaon of mo7on….what is this term? Fixing the gauge – path integral formalism path integral Suppose under , Transformaons form a group, under g, g’, Redundant integraon Want to rewrite in the form with J independent of g I = dg J ∫ Volume of the group Fixing the gauge – path integral formalism path integral Suppose under , Transformaons form a group, under g, g’, Redundant integraon Want to rewrite in the form with independent of g I = dg J J (∫ ) so that remaining path integral has no redundant variables iS(x,y) iS(x2 + y2 ) c.f. I = dx dy e ≡ dx dy e ∫ ∫ I = dθ J = (2π ) J where J = dr r eiS (r ) (∫ ) ∫ volume of group of rotaons in 2 dimensions Faddeev, Popov gauge fixing will be gauge fixing term Define Faddeev Popov determinant Dg '' = Dg i.e. Δ(A) = Δ(A ) g Faddeev, Popov gauge fixing will be gauge fixing term Define Faddeev Popov determinant Dg '' = Dg i.e. (A) (A ) iS ( A) Δ = Δ g I ≡ DA e ∫ No redundant variables changing and no7ng are invariant A → A −1 DA, S( A), Δ( A) g Fixing the electromagne7c gauge Λ ≡ g A = A − ∂ Λ g µ µ Choose f ( A) = ∂ Aµ −σ (x) µ Fixing the electromagne7c gauge Λ ≡ g A = A − ∂ Λ g µ µ Choose f ( A) = ∂ Aµ −σ (x) µ Δ( A)−1 = Dgδ ⎡ f ( A )⎤ = DΛδ (∂A− ∂2 Λ −σ ) " = " DΛδ (∂2 Λ) ∫ ⎣ g ⎦ ∫ ∫ i.e. Δ(A) is const …absorb in normalisaon Fixing the electromagne7c gauge Λ ≡ g A = A − ∂ Λ g µ µ Choose f ( A) = ∂ Aµ −σ (x) µ Δ( A)−1 = Dgδ ⎡ f ( A )⎤ = DΛδ (∂A− ∂2 Λ −σ ) " = " DΛδ (∂2 Λ) ∫ ⎣ g ⎦ ∫ ∫ i.e. Δ(A) is const …absorb in normalisaon I ≡ DA eiS ( A) ∫ Since I is independent of f, we can integrate I with an arbitrary func7onal of σ Rξ gauge 1 −1 µ ν i.e. Lgauge fixing = − ξ ∂ Aµ∂ Aν R gauge 2 ξ Propagator: −1 ⎛ 1 ⎞ i ⎛ p p ⎞ i g µν p2 (1 ) pµ pν g (1 ) µ ν − ⎜ − − ⎟ = 2 ⎜ − µν + −ξ 2 ⎟ ⎝ ξ ⎠ p ⎝ p ⎠ Propagator: −1 ⎛ 1 ⎞ i ⎛ p p ⎞ i g µν p2 (1 ) pµ pν g (1 ) µ ν − ⎜ − − ⎟ = 2 ⎜ − µν + −ξ 2 ⎟ ⎝ ξ ⎠ p ⎝ p ⎠ ξ = 1: ‘t Hoof - Feynman gauge ξ = 0 : Lorentz gauge .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us